۰
subtitle
ارسال: #۱
  
تست جعبه و کارت
گزینه ۴ جواب شده.
جواب رو متوجه نشدم.
۰
ارسال: #۲
  
تست جعبه و کارت
سلام. کل حالات بدون درنظرگرفتن شرط محدودیت که ۱۰! میشه. این عدد رو منهای حالتی میکنیم که میدونیم یه کارت زوج توی جعبه خودش قرار گرفته (یعنی انتخاب ۱ از ۵) و بقیه رو به ۹! حالت جابجا میکنیم. چون برای شمردن تعداد حالات بعضی از حالتهارو چندبار شمردیم.(مثلا درنظر گرفتیم که کارت ۲ در جعبه خودش باشه. یکی از این حالات کارت ۴ هم توی جعبه خودشه. یک بارهم میگیم کارت ۴ توی جعبشه. حالتی که ۲ هم توی جبه خودشه دوباره شمرده میشه. ما باید این حالات رو حذف کنیم.)
حالا باید حالاتی که دوبار کم کردیم رو به مجموعمون اضافه کنیم. یعنی ۲ عضو از ۵ عضو رو انتخاب میکنیم که توی جعبه خودشونن و بقیه رو به ۸! حالت جابجا میکنیم. این حالات مشترک رو یکی درمیون تا انتخاب ۵ از ۱۰ (یعنی هر ۵ کارت زوج توی جعبه خودشون باشن. این حالت دیگه شمارش اضافه نداریم.) باید کم و اضافه کنیم. یعنی داریم:
حالا باید حالاتی که دوبار کم کردیم رو به مجموعمون اضافه کنیم. یعنی ۲ عضو از ۵ عضو رو انتخاب میکنیم که توی جعبه خودشونن و بقیه رو به ۸! حالت جابجا میکنیم. این حالات مشترک رو یکی درمیون تا انتخاب ۵ از ۱۰ (یعنی هر ۵ کارت زوج توی جعبه خودشون باشن. این حالت دیگه شمارش اضافه نداریم.) باید کم و اضافه کنیم. یعنی داریم:
[tex]10!-\binom{5}{1}9! \binom{5}{2}8!-\binom{5}{3}7! \binom{5}{4}6!-\binom{5}{5}5!=\sum_{i=0}^{5}(-1)^i\binom{5}{i}(10-i)![/tex]
Can I see some ID?
Feeling left out?
نگران نباش، فقط روی این لینک برای ثبت نام کلیک کن. رمزت رو فراموش کردی؟ اینجا به یادت میاریم! close