زمان کنونی: ۰۶ دى ۱۴۰۳, ۰۷:۲۵ ب.ظ مهمان گرامی به انجمن مانشت خوش آمدید. برای استفاده از تمامی امکانات انجمن می‌توانید عضو شوید.
گزینه‌های شما (ورودثبت نام)

درخت بازگشتی این عبارت

ارسال:
  

directline پرسیده:

درخت بازگشتی این عبارت

سلام دوستان
درخت بازگشتی این عبارت چی میشه؟

[tex]T(n)=T(n-1) T(\frac{n}{2}) n[/tex]

درخت جدا هر کدوم از n-1 و n/2 خیلی راحت میشه کشید اما وقتی باهم هستن جمع میشن چطور باید درختش رو کشید؟

پیشاپیش ممنون دوستان
نقل قول این ارسال در یک پاسخ

۱
ارسال:
  

MiladCr7 پاسخ داده:

RE: درخت بازگشتی این عبارت

سلام .توی تابع هایی که اینجوری ریتم مختلفی دارند بله
نقل قول این ارسال در یک پاسخ

ارسال:
  

ziba.O پاسخ داده:

RE: درخت بازگشتی این عبارت

(۰۴ مهر ۱۳۹۳ ۱۰:۵۹ ب.ظ)miladcr7 نوشته شده توسط:  سلام .توی تابع هایی که اینجوری ریتم مختلفی دارند بله

پس چرا تو سوالی که من پرسیدم تو اون یکی تاپیک مرتبه ی دو قسمت بهم ضرب شدند؟ Undecided
یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

ارسال:
  

MiladCr7 پاسخ داده:

RE: درخت بازگشتی این عبارت

(۰۴ مهر ۱۳۹۳ ۱۱:۰۶ ب.ظ)ziba.O نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۰:۵۹ ب.ظ)miladcr7 نوشته شده توسط:  سلام .توی تابع هایی که اینجوری ریتم مختلفی دارند بله

پس چرا تو سوالی که من پرسیدم تو اون یکی تاپیک مرتبه ی دو قسمت بهم ضرب شدند؟ Undecided

میشه ادرسشو بدید؟؟؟؟
یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

ارسال:
  

ziba.O پاسخ داده:

RE: درخت بازگشتی این عبارت

(۰۴ مهر ۱۳۹۳ ۱۱:۱۴ ب.ظ)miladcr7 نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۰۶ ب.ظ)ziba.O نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۰:۵۹ ب.ظ)miladcr7 نوشته شده توسط:  سلام .توی تابع هایی که اینجوری ریتم مختلفی دارند بله

پس چرا تو سوالی که من پرسیدم تو اون یکی تاپیک مرتبه ی دو قسمت بهم ضرب شدند؟ Undecided

میشه ادرسشو بدید؟؟؟؟


مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.

دوست عزیز معذرت میخوام اینقدر گیج شدم قاطی کردم همه چیو اگه میشه یکم ساده تر اینارو واسم سوا کنین.خدا خیرت بده
یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

ارسال:
  

MiladCr7 پاسخ داده:

RE: درخت بازگشتی این عبارت

(۰۴ مهر ۱۳۹۳ ۱۱:۱۷ ب.ظ)ziba.O نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۱۴ ب.ظ)miladcr7 نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۰۶ ب.ظ)ziba.O نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۰:۵۹ ب.ظ)miladcr7 نوشته شده توسط:  سلام .توی تابع هایی که اینجوری ریتم مختلفی دارند بله

پس چرا تو سوالی که من پرسیدم تو اون یکی تاپیک مرتبه ی دو قسمت بهم ضرب شدند؟ Undecided

میشه ادرسشو بدید؟؟؟؟


مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.

دوست عزیز معذرت میخوام اینقدر گیج شدم قاطی کردم همه چیو اگه میشه یکم ساده تر اینارو واسم سوا کنین.خدا خیرت بده

دقیقا بگو توی چی مشکل داری الان؟؟؟؟؟
یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

ارسال:
  

ziba.O پاسخ داده:

RE: درخت بازگشتی این عبارت

(۰۴ مهر ۱۳۹۳ ۱۱:۳۷ ب.ظ)miladcr7 نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۱۷ ب.ظ)ziba.O نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۱۴ ب.ظ)miladcr7 نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۰۶ ب.ظ)ziba.O نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۰:۵۹ ب.ظ)miladcr7 نوشته شده توسط:  سلام .توی تابع هایی که اینجوری ریتم مختلفی دارند بله

پس چرا تو سوالی که من پرسیدم تو اون یکی تاپیک مرتبه ی دو قسمت بهم ضرب شدند؟ Undecided

میشه ادرسشو بدید؟؟؟؟


مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.

دوست عزیز معذرت میخوام اینقدر گیج شدم قاطی کردم همه چیو اگه میشه یکم ساده تر اینارو واسم سوا کنین.خدا خیرت بده

دقیقا بگو توی چی مشکل داری الان؟؟؟؟؟

یه مشکل زیربنایی تو تعیین مرتبه زمانی دارم اون اینه که اگه یه قسمت تابع (T(n-1 باشه بعد با چیز دیگه ای مثل تابع لگاریتمی یا توانی جمع شه مرتبه ی کل تابع چی میشه؟ اسمه روشه حلش چیه؟
یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

ارسال:
  

MiladCr7 پاسخ داده:

RE: درخت بازگشتی این عبارت

iba.O' pid='305268' dateline='1411758772']
(۰۴ مهر ۱۳۹۳ ۱۱:۳۷ ب.ظ)miladcr7 نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۱۷ ب.ظ)ziba.O نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۱۴ ب.ظ)miladcr7 نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۰۶ ب.ظ)ziba.O نوشته شده توسط:  پس چرا تو سوالی که من پرسیدم تو اون یکی تاپیک مرتبه ی دو قسمت بهم ضرب شدند؟ Undecided

میشه ادرسشو بدید؟؟؟؟


مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.

دوست عزیز معذرت میخوام اینقدر گیج شدم قاطی کردم همه چیو اگه میشه یکم ساده تر اینارو واسم سوا کنین.خدا خیرت بده

دقیقا بگو توی چی مشکل داری الان؟؟؟؟؟

یه مشکل زیربنایی تو تعیین مرتبه زمانی دارم اون اینه که اگه یه قسمت تابع (T(n-1 باشه بعد با چیز دیگه ای مثل تابع لگاریتمی یا توانی جمع شه مرتبه ی کل تابع چی میشه؟ اسمه روشه حلش چیه؟
[/quote]

بللللله.SmileSmileSmile
البته الان این خیلی خیلی کلیه.ای کاش یکم جزیی تر میگفتید مثلا توی روش خاصی مشکل دارید یا نه؟؟؟
الان توی روش خاصی مشکل هست یا نه دقیقا توی حل روابط بازگشتی مشکل دارید؟؟؟؟
یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

ارسال:
  

ziba.O پاسخ داده:

RE: درخت بازگشتی این عبارت

(۰۴ مهر ۱۳۹۳ ۱۱:۵۲ ب.ظ)miladcr7 نوشته شده توسط:  iba.O' pid='305268' dateline='1411758772']
(۰۴ مهر ۱۳۹۳ ۱۱:۳۷ ب.ظ)miladcr7 نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۱۷ ب.ظ)ziba.O نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۱۴ ب.ظ)miladcr7 نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۰۶ ب.ظ)ziba.O نوشته شده توسط:  پس چرا تو سوالی که من پرسیدم تو اون یکی تاپیک مرتبه ی دو قسمت بهم ضرب شدند؟ Undecided

میشه ادرسشو بدید؟؟؟؟


مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.

دوست عزیز معذرت میخوام اینقدر گیج شدم قاطی کردم همه چیو اگه میشه یکم ساده تر اینارو واسم سوا کنین.خدا خیرت بده

دقیقا بگو توی چی مشکل داری الان؟؟؟؟؟

یه مشکل زیربنایی تو تعیین مرتبه زمانی دارم اون اینه که اگه یه قسمت تابع (T(n-1 باشه بعد با چیز دیگه ای مثل تابع لگاریتمی یا توانی جمع شه مرتبه ی کل تابع چی میشه؟ اسمه روشه حلش چیه؟

بللللله.SmileSmileSmile
البته الان این خیلی خیلی کلیه.ای کاش یکم جزیی تر میگفتید مثلا توی روش خاصی مشکل دارید یا نه؟؟؟
الان توی روش خاصی مشکل هست یا نه دقیقا توی حل روابط بازگشتی مشکل دارید؟؟؟؟
[/quote]

ببینید اون مسائلی که با مستر حل میشه به کنار، آره تو بقیش مشکل دارمRolleyes
یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

ارسال: #۱۰
  

MiladCr7 پاسخ داده:

RE: درخت بازگشتی این عبارت

(۰۵ مهر ۱۳۹۳ ۱۲:۰۷ ق.ظ)ziba.O نوشته شده توسط:  
miladcr7 datelin='1411759348' نوشته شده توسط:  iba.O' pid='305268' dateline='1411758772']
(۰۴ مهر ۱۳۹۳ ۱۱:۳۷ ب.ظ)miladcr7 نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۱۷ ب.ظ)ziba.O نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۱۴ ب.ظ)miladcr7 نوشته شده توسط:  میشه ادرسشو بدید؟؟؟؟


مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.

دوست عزیز معذرت میخوام اینقدر گیج شدم قاطی کردم همه چیو اگه میشه یکم ساده تر اینارو واسم سوا کنین.خدا خیرت بده

دقیقا بگو توی چی مشکل داری الان؟؟؟؟؟

یه مشکل زیربنایی تو تعیین مرتبه زمانی دارم اون اینه که اگه یه قسمت تابع (T(n-1 باشه بعد با چیز دیگه ای مثل تابع لگاریتمی یا توانی جمع شه مرتبه ی کل تابع چی میشه؟ اسمه روشه حلش چیه؟

بللللله.SmileSmileSmile
البته الان این خیلی خیلی کلیه.ای کاش یکم جزیی تر میگفتید مثلا توی روش خاصی مشکل دارید یا نه؟؟؟
الان توی روش خاصی مشکل هست یا نه دقیقا توی حل روابط بازگشتی مشکل دارید؟؟؟؟

ببینید اون مسائلی که با مستر حل میشه به کنار، آره تو بقیش مشکل دارمRolleyes
[/quote]

چشم ببینم چیکار میشه کرد.توضیح رو که حتما براتون میدم ولی خب دیگه جامع بودنش رو نمیدونم و اینکه توضیحاتم رو بفهمید هم قولی نمیدمSmileSmileSmile
یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

ارسال: #۱۱
  

ziba.O پاسخ داده:

RE: درخت بازگشتی این عبارت

(۰۵ مهر ۱۳۹۳ ۱۲:۱۸ ق.ظ)miladcr7 نوشته شده توسط:  
(05 مهر ۱۳۹۳ ۱۲:۰۷ ق.ظ)ziba.O نوشته شده توسط:  
miladcr7 datelin='1411759348' نوشته شده توسط:  iba.O' pid='305268' dateline='1411758772']
(۰۴ مهر ۱۳۹۳ ۱۱:۳۷ ب.ظ)miladcr7 نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۱۱:۱۷ ب.ظ)ziba.O نوشته شده توسط:  
مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.

دوست عزیز معذرت میخوام اینقدر گیج شدم قاطی کردم همه چیو اگه میشه یکم ساده تر اینارو واسم سوا کنین.خدا خیرت بده

دقیقا بگو توی چی مشکل داری الان؟؟؟؟؟

یه مشکل زیربنایی تو تعیین مرتبه زمانی دارم اون اینه که اگه یه قسمت تابع (T(n-1 باشه بعد با چیز دیگه ای مثل تابع لگاریتمی یا توانی جمع شه مرتبه ی کل تابع چی میشه؟ اسمه روشه حلش چیه؟

بللللله.SmileSmileSmile
البته الان این خیلی خیلی کلیه.ای کاش یکم جزیی تر میگفتید مثلا توی روش خاصی مشکل دارید یا نه؟؟؟
الان توی روش خاصی مشکل هست یا نه دقیقا توی حل روابط بازگشتی مشکل دارید؟؟؟؟

ببینید اون مسائلی که با مستر حل میشه به کنار، آره تو بقیش مشکل دارمRolleyes

چشم ببینم چیکار میشه کرد.توضیح رو که حتما براتون میدم ولی خب دیگه جامع بودنش رو نمیدونم و اینکه توضیحاتم رو بفهمید هم قولی نمیدمSmileSmileSmile
[/quote]

شما بفرمایین من سعی میکنم بفهمم
یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

۰
ارسال: #۱۲
  

ADELZX پاسخ داده:

RE: درخت بازگشتی این عبارت

بنظرم حد بالای رابطه همون قسمت اول بازگشته که از بازه [tex]O(n^2)[/tex] هستش.
نقل قول این ارسال در یک پاسخ

ارسال: #۱۳
  

ziba.O پاسخ داده:

RE: درخت بازگشتی این عبارت

(۰۴ مهر ۱۳۹۳ ۰۶:۰۷ ب.ظ)ADELZX نوشته شده توسط:  بنظرم حد بالای رابطه همون قسمت اول بازگشته که از بازه [tex]O(n^2)[/tex] هستش.

منبع خوبی سراغ داری این قسمتو خوب توضیح داده باشه؟
یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

۰
ارسال: #۱۴
  

MiladCr7 پاسخ داده:

RE: درخت بازگشتی این عبارت

سلام.باید n/2. رو حذف کنید و بعد درخت بازگشت رو رسم کنید
نقل قول این ارسال در یک پاسخ

۰
ارسال: #۱۵
  

directline پاسخ داده:

RE: درخت بازگشتی این عبارت

(۰۴ مهر ۱۳۹۳ ۰۶:۰۷ ب.ظ)ADELZX نوشته شده توسط:  بنظرم حد بالای رابطه همون قسمت اول بازگشته که از بازه [tex]O(n^2)[/tex] هستش.

چطور حساب کردید؟

(۰۴ مهر ۱۳۹۳ ۰۷:۲۹ ب.ظ)miladcr7 نوشته شده توسط:  سلام.باید n/2. رو حذف کنید و بعد درخت بازگشت رو رسم کنید


چرا باید n/2 حذف بشه؟ فکر کنم تو بازگشت ها تاثیر داشته باش
نقل قول این ارسال در یک پاسخ

۰
ارسال: #۱۶
  

m@hboobe پاسخ داده:

RE: درخت بازگشتی این عبارت

n را ریشه قرار بدید و درخت رسم کنید!هر بار مقدار n در یک سمت درخت یک واحد کم میشه و در سمت دیگه نصف میشه همین طور هر گره جدید رو ادامه میدیم....
حد بالای این تایع در سمتی بدست میاد که n-1 انجام میشه پس مرتبه این تابع از [tex]O(n^2)[/tex] است.
نقل قول این ارسال در یک پاسخ

ارسال: #۱۷
  

directline پاسخ داده:

RE: درخت بازگشتی این عبارت

(۰۴ مهر ۱۳۹۳ ۰۹:۰۸ ب.ظ)m@hboobe نوشته شده توسط:  n را ریشه قرار بدید و درخت رسم کنید!هر بار مقدار n در یک سمت درخت یک واحد کم میشه و در سمت دیگه نصف میشه همین طور هر گره جدید رو ادامه میدیم....
حد بالای این تایع در سمتی بدست میاد که n-1 انجام میشه پس مرتبه این تابع از [tex]O(n^2)[/tex] است.

قبول اما شما چطور جمع سطوح درخت رو انجام دادید؟ اخه روند خاصی براش به دست نمیاد!
فکر کنم استدلال شما اینطور که ارتفاع که N میشه تو هر سطح هم که یک ضریبی از N داریم پس میشه N^2 درسته؟ اگر اینطوره از کجا میدونید سیگما سطوح رو حساب کنید به N^3 نمیرسه؟

یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

ارسال: #۱۸
  

m@hboobe پاسخ داده:

RE: درخت بازگشتی این عبارت

(۰۴ مهر ۱۳۹۳ ۰۹:۴۱ ب.ظ)directline نوشته شده توسط:  
(04 مهر ۱۳۹۳ ۰۹:۰۸ ب.ظ)m@hboobe نوشته شده توسط:  n را ریشه قرار بدید و درخت رسم کنید!هر بار مقدار n در یک سمت درخت یک واحد کم میشه و در سمت دیگه نصف میشه همین طور هر گره جدید رو ادامه میدیم....
حد بالای این تایع در سمتی بدست میاد که n-1 انجام میشه پس مرتبه این تابع از [tex]O(n^2)[/tex] است.

قبول اما شما چطور جمع سطوح درخت رو انجام دادید؟ اخه روند خاصی براش به دست نمیاد!
فکر کنم استدلال شما اینطور که ارتفاع که N میشه تو هر سطح هم که یک ضریبی از N داریم پس میشه N^2 درسته؟ اگر اینطوره از کجا میدونید سیگما سطوح رو حساب کنید به N^3 نمیرسه؟
درسته حق با شماست اگر بخواهیم بطور دقیق درخت رسم کنید چنین چیزی به نتیجه جالبی نمیرسیم
ولی حداقل با همین روش که کاملا هم درست نیست (اگر دقت کنید جلوی جمله رسم درختم علامت تعجب گذاشتم Big Grin ) متوجه میشیم که اگر بخواهیم محاسبه رو با اون قسمت از تایع که هر بار یک واحد کم میکنه انجام بدیم ارتفاع بیشتری داریم (با توجه به صحبتهای سایر بچه ها = دیر تر به یک نزدیک میشه!) پس اون بخش موثر در حل هست
من خودم اولین بار که به این مساله برخورد کردم اینجور درنظر گرفتم که ممکنه هر بار یه بخش از این تابع اتفاق بیفته با n-1 مرتبه که [tex]Theta(n^2)[/tex] شد و با n/2 از طریق مستر شد [tex]Theta(n)[/tex] که گفتم کران بالای حل میشه [tex]O(n^2)[/tex] Big Grin
امیدوارم که با توضیحاتم گیج نشده باشید
موفق باشین
یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

۰
ارسال: #۱۹
  

MiladCr7 پاسخ داده:

RE: درخت بازگشتی این عبارت

سلام این مثال چون از دو تابع کاملا متفاوت تشکیل شده حل دقیقی نداره ولی روش حل تقریبیش اینه که اون تابعی که زودتر به یک میرسه رو بیخیال میشیم خب؟
حالا توی این مثال n/2 داره سریعتر به یک نزدیک میشه پس میتونیم حذفش کنیم یا یه روش دیگه برای حذف اینه که اون تابعی که زمان اجرای کمتری داره رو حذف میکنیم چون بازم زودتر به یک میرسه حالا دقت کن که مرتبه اجرای n/2 لگاریتمی هستش و اون یکی تابع مرتبش از n هست پس n/2 رو حذف کن حالا تابع باقیمونده مرتبه اجراش n به توان دو میشه
اکی؟؟؟SmileSmileSmile
نقل قول این ارسال در یک پاسخ

۰
ارسال: #۲۰
  

ziba.O پاسخ داده:

RE: درخت بازگشتی این عبارت

یعنی میشه اینطوری نتیجه گیری کلی کرد؟؟؟؟؟ ( اگه تابعی از مجموع چندین مرتبه مختلف تشکیل شده باشه ، بیشترین مرتبه مرتبه اجرایی اون تابعه؟)Blush
نقل قول این ارسال در یک پاسخ

۰
ارسال: #۲۱
  

ziba.O پاسخ داده:

RE: درخت بازگشتی این عبارت


مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.

دوست عزیز معذرت میخوام اینقدر گیج شدم قاطی کردم همه چیو اگه میشه یکم ساده تر اینارو واسم سوا کنین.خدا خیرت بده
نقل قول این ارسال در یک پاسخ

۰
ارسال: #۲۲
  

alphax پاسخ داده:

RE: درخت بازگشتی این عبارت

(۰۴ مهر ۱۳۹۳ ۰۵:۱۵ ب.ظ)directline نوشته شده توسط:  سلام دوستان
درخت بازگشتی این عبارت چی میشه؟

[tex]T(n)=T(n-1) T(\frac{n}{2}) n[/tex]

درخت جدا هر کدوم از n-1 و n/2 خیلی راحت میشه کشید اما وقتی باهم هستن جمع میشن چطور باید درختش رو کشید؟

پیشاپیش ممنون دوستان


اینو بخون

مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.
نقل قول این ارسال در یک پاسخ

۰
ارسال: #۲۳
  

MiladCr7 پاسخ داده:

RE: درخت بازگشتی این عبارت

(۰۴ مهر ۱۳۹۳ ۰۵:۱۵ ب.ظ)directline نوشته شده توسط:  سلام دوستان
درخت بازگشتی این عبارت چی میشه؟

[tex]T(n)=T(n-1) T(\frac{n}{2}) n[/tex]

درخت جدا هر کدوم از n-1 و n/2 خیلی راحت میشه کشید اما وقتی باهم هستن جمع میشن چطور باید درختش رو کشید؟

پیشاپیش ممنون دوستان

قبلا هم گفتیم این معادله حل دقیق نداره ولی n/2 رو حذف میکنیم و تقریبی حلش میکنیم
نقل قول این ارسال در یک پاسخ



موضوع‌های مرتبط با این موضوع...
موضوع: نویسنده پاسخ: بازدید: آخرین ارسال
  تعداد برگ درخت؟؟؟؟؟؟؟ rad.bahar ۴ ۴,۹۲۴ ۱۵ آذر ۱۴۰۲ ۱۱:۵۳ ق.ظ
آخرین ارسال: mohamadrra
  کمک در باره این تروجان Ghasemiyeh ۲ ۳,۰۹۴ ۲۵ آذر ۱۴۰۰ ۰۳:۰۰ ق.ظ
آخرین ارسال: one hacker alone
  دو سوال در مورد درخت BST(درخت جستجوی دودویی) امیدوار ۳ ۵,۶۵۶ ۱۰ دى ۱۳۹۹ ۱۲:۰۴ ق.ظ
آخرین ارسال: marzi.pnh
  زمان جستجوی درخت fateme.sm ۰ ۱,۷۹۸ ۰۶ دى ۱۳۹۹ ۱۰:۴۱ ب.ظ
آخرین ارسال: fateme.sm
  مرتبه ایجاد درخت rad.bahar ۱ ۳,۴۲۱ ۳۰ مهر ۱۳۹۹ ۰۳:۳۴ ب.ظ
آخرین ارسال: rad.bahar
  چگونه این خطا را موقع اجرای sql server 2014 رفع کنم ؟ farahnaz ۲ ۳,۱۱۶ ۱۹ مهر ۱۳۹۹ ۰۲:۱۸ ق.ظ
آخرین ارسال: farahnaz
  عمق درخت ???? rad.bahar ۱ ۲,۴۴۰ ۱۱ مهر ۱۳۹۹ ۰۳:۳۱ ب.ظ
آخرین ارسال: عزیز دادخواه
  محاسبه ارتفاع درخت.... baharkhanoom ۳ ۸,۱۷۸ ۰۹ اردیبهشت ۱۳۹۹ ۰۶:۴۸ ب.ظ
آخرین ارسال: mohsentafresh
  پایتون (طراحی وب یا دیتا ساینس؟) مساله این است... sirvan.t ۲ ۳,۷۱۳ ۱۹ بهمن ۱۳۹۸ ۱۲:۰۱ ب.ظ
آخرین ارسال: sirvan.t
  تعداد درخت فراگیر ss311 ۰ ۲,۳۴۳ ۰۶ بهمن ۱۳۹۸ ۰۵:۰۶ ب.ظ
آخرین ارسال: ss311

پرش به انجمن:

Can I see some ID?

به خاطر سپاری رمز Cancel

Feeling left out?


نگران نباش، فقط روی این لینک برای ثبت نام کلیک کن. رمزت رو فراموش کردی؟ اینجا به یادت میاریم! close

رمزت رو فراموش کردی؟

Feeling left out?


نگران نباش، فقط روی این لینک برای ثبت نام کلیک کن. close