۱
subtitle
ارسال: #۱
  
درخواست حل سوال ۸ از علوم کامپیوتر ۹۶
سوال مورد نظر پیوست شده است
جوابش رو گزینه ۴ زده
ممنون از دوستان
جوابش رو گزینه ۴ زده
ممنون از دوستان
۲
ارسال: #۲
  
RE: درخواست حل سوال ۸ از علوم کامپیوتر ۹۶
سلام
ابتدا رابطه ی بازگشتی را حل میکنیم که دارای معادله مشخصه [tex](x^2-2x+1)(x-1)=(x-1)^3[/tex] یعنی یک ریشه مرتبه ی سوم است پس [tex]X_n=\alpha+\beta n+\gamma n^2[/tex] که با جایگذاری مقادیر اولیه و حل معادلات به [tex]X_n=1+\frac{n}{2}+\frac{n^2}{2}[/tex] میرسیم پس درنتیجه
[tex]X_{\frac{n}{2}}=1+\frac{n}{4}+\frac{n^2}{8}[/tex]
و [tex]4X_{\frac{n}{2}}=4+n+\frac{n^2}{2}=1+\frac{n}{2}+\frac{n^2}{2}+\frac{n}{2}+3=X_n+\frac{n}{2}+3\: \Longrightarrow\Longrightarrow\: X_n=4X_{\frac{n}{2}}-\frac{n}{2}-3[/tex]
که اگر به n مقدار ۱۰۰ بدهیم داریم[tex]\: X_{100}=4X_{50}-53[/tex]
یعنی رد گزینه ی۴ و همچنین رد گزینه ی ۲ بخاطر بسیار بزرگ بودن نسبت به گزینه ی ۲ که خود مقداری ۵۰ واحدی بزرگتر تولید می کند
برای بررسی دو گزینه ی دیگر یعنی مقادیر فرد برای n
[tex]\: X_{\frac{n-1}{2}}=1+\frac{n-1}{4}+\frac{(n-1)^2}{8}[/tex] که [tex]\: 4X_{\frac{n-1}{2}}=4+n-1+\frac{n^2}{2}-n+\frac{1}{2}=4+\frac{n^2}{2}-\frac{1}{2}=1+\frac{n}{2}+\frac{n^2}{2}+3-\frac{1}{2}-\frac{n}{2}=X_n-\frac{n}{2}+\frac{5}{2}\: \Longrightarrow\: X_n=4X_{\frac{n-1}{2}}+\frac{n-5}{2}[/tex]
که اگر n را ۱۰۱ فرض کنیم [tex]X_{101}=4X_{50}+48[/tex] که نه گزینه ی یک و نه گزینه ی ۳ چون هردو مقداری بزرگتر تولید می کنند
ابتدا رابطه ی بازگشتی را حل میکنیم که دارای معادله مشخصه [tex](x^2-2x+1)(x-1)=(x-1)^3[/tex] یعنی یک ریشه مرتبه ی سوم است پس [tex]X_n=\alpha+\beta n+\gamma n^2[/tex] که با جایگذاری مقادیر اولیه و حل معادلات به [tex]X_n=1+\frac{n}{2}+\frac{n^2}{2}[/tex] میرسیم پس درنتیجه
[tex]X_{\frac{n}{2}}=1+\frac{n}{4}+\frac{n^2}{8}[/tex]
و [tex]4X_{\frac{n}{2}}=4+n+\frac{n^2}{2}=1+\frac{n}{2}+\frac{n^2}{2}+\frac{n}{2}+3=X_n+\frac{n}{2}+3\: \Longrightarrow\Longrightarrow\: X_n=4X_{\frac{n}{2}}-\frac{n}{2}-3[/tex]
که اگر به n مقدار ۱۰۰ بدهیم داریم[tex]\: X_{100}=4X_{50}-53[/tex]
یعنی رد گزینه ی۴ و همچنین رد گزینه ی ۲ بخاطر بسیار بزرگ بودن نسبت به گزینه ی ۲ که خود مقداری ۵۰ واحدی بزرگتر تولید می کند
برای بررسی دو گزینه ی دیگر یعنی مقادیر فرد برای n
[tex]\: X_{\frac{n-1}{2}}=1+\frac{n-1}{4}+\frac{(n-1)^2}{8}[/tex] که [tex]\: 4X_{\frac{n-1}{2}}=4+n-1+\frac{n^2}{2}-n+\frac{1}{2}=4+\frac{n^2}{2}-\frac{1}{2}=1+\frac{n}{2}+\frac{n^2}{2}+3-\frac{1}{2}-\frac{n}{2}=X_n-\frac{n}{2}+\frac{5}{2}\: \Longrightarrow\: X_n=4X_{\frac{n-1}{2}}+\frac{n-5}{2}[/tex]
که اگر n را ۱۰۱ فرض کنیم [tex]X_{101}=4X_{50}+48[/tex] که نه گزینه ی یک و نه گزینه ی ۳ چون هردو مقداری بزرگتر تولید می کنند
ارسال: #۳
  
RE: درخواست حل سوال ۸ از علوم کامپیوتر ۹۶
(۲۳ بهمن ۱۳۹۶ ۰۳:۲۷ ب.ظ)msour44 نوشته شده توسط: سلام
ابتدا رابطه ی بازگشتی را حل میکنیم که دارای معادله مشخصه [tex](x^2-2x+1)(x-1)=(x-1)^3[/tex] یعنی یک ریشه مرتبه ی سوم است پس [tex]X_n=\alpha+\beta n+\gamma n^2[/tex] که با جایگذاری مقادیر اولیه و حل معادلات به [tex]X_n=1+\frac{n}{2}+\frac{n^2}{2}[/tex] میرسیم پس درنتیجه
[tex]X_{\frac{n}{2}}=1+\frac{n}{4}+\frac{n^2}{8}[/tex]
و [tex]4X_{\frac{n}{2}}=4+n+\frac{n^2}{2}=1+\frac{n}{2}+\frac{n^2}{2}+\frac{n}{2}+3=X_n+\frac{n}{2}+3\: \Longrightarrow\Longrightarrow\: X_n=4X_{\frac{n}{2}}-\frac{n}{2}-3[/tex]
که اگر به n مقدار ۱۰۰ بدهیم داریم[tex]\: X_{100}=4X_{50}-53[/tex]
یعنی رد گزینه ی۴ و همچنین رد گزینه ی ۲ بخاطر بسیار بزرگ بودن نسبت به گزینه ی ۲ که خود مقداری ۵۰ واحدی بزرگتر تولید می کند
برای بررسی دو گزینه ی دیگر یعنی مقادیر فرد برای n
[tex]\: X_{\frac{n-1}{2}}=1+\frac{n-1}{4}+\frac{(n-1)^2}{8}[/tex] که [tex]\: 4X_{\frac{n-1}{2}}=4+n-1+\frac{n^2}{2}-n+\frac{1}{2}=4+\frac{n^2}{2}-\frac{1}{2}=1+\frac{n}{2}+\frac{n^2}{2}+3-\frac{1}{2}-\frac{n}{2}=X_n-\frac{n}{2}+\frac{5}{2}\: \Longrightarrow\: X_n=4X_{\frac{n-1}{2}}+\frac{n-5}{2}[/tex]
که اگر n را ۱۰۱ فرض کنیم [tex]X_{101}=4X_{50}+48[/tex] که نه گزینه ی یک و نه گزینه ی ۳ چون هردو مقداری بزرگتر تولید می کنند
ممنونم.
فقط ببخشید با دو شرط اولیه چطور مجهول های معادله Xn=α+βn+γn2Xn=α+βn+γn2 پیدا شدن؟ چون سه تا مجهول داریم.
ارسال: #۴
  
RE: درخواست حل سوال ۸ از علوم کامپیوتر ۹۶
(۲۵ بهمن ۱۳۹۶ ۰۱:۴۳ ق.ظ)Sepideh96 نوشته شده توسط:مقدار اولیه سوم رو هم میتوانید با لحاظ کردن دومقدار داده شده در رابطه ی بازگشتی بدست بیاورید(23 بهمن ۱۳۹۶ ۰۳:۲۷ ب.ظ)msour44 نوشته شده توسط:
ممنونم.
فقط ببخشید با دو شرط اولیه چطور مجهول های معادله Xn=α+βn+γn2Xn=α+βn+γn2 پیدا شدن؟ چون سه تا مجهول داریم.
۰
ارسال: #۵
  
RE: درخواست حل سوال ۸ از علوم کامپیوتر ۹۶
ارسال: #۶
  
RE: درخواست حل سوال ۸ از علوم کامپیوتر ۹۶
(۱۹ بهمن ۱۳۹۶ ۰۱:۵۳ ب.ظ)Behnam نوشته شده توسط:(19 بهمن ۱۳۹۶ ۰۱:۳۳ ب.ظ)Sepideh96 نوشته شده توسط: سوال مورد نظر پیوست شده است
جوابش رو گزینه ۴ زده
ممنون از دوستان
شاید بد نباشه خودتون هم یه تلاشی در حل سوالاتی که میذارید داشته باشید. یا اگر داشتید، حلتون رو بذارید تا اشتباهتون رو گوشزد کنند. برای خودتون هم بهتره.
مطمئن باشید قبل از اینکه سوال رو بزارم تلاش برای حلش کردم و نتونستم. اگر مشکلی در حل اش داشته باشم مینویسم در غیراینصورت حرف خاصی برای گفتن ندارم وقتی نتونستم حل اش کنم.
Can I see some ID?
Feeling left out?
نگران نباش، فقط روی این لینک برای ثبت نام کلیک کن. رمزت رو فراموش کردی؟ اینجا به یادت میاریم! close