زمان کنونی: ۰۷ دى ۱۴۰۳, ۱۱:۱۵ ق.ظ مهمان گرامی به انجمن مانشت خوش آمدید. برای استفاده از تمامی امکانات انجمن می‌توانید عضو شوید.
گزینه‌های شما (ورودثبت نام)

سوال در مورد اعداد کاتالان؛ دلیل جواب مسئله صفحه شطرنجی n*n

ارسال:
  

amogharrebi پرسیده:

سوال در مورد اعداد کاتالان؛ دلیل جواب مسئله صفحه شطرنجی n*n

عرض ادب دارم خدمت همه دوستان؛
یه سوالی یکی دو هفته ای هست که ذهن منو مشغول به خودش کرده و واقعا ممنون میشم یه بزرگواری پیدا بشه و منو از این آمپاس شدید در بیاره!!!!HuhHuh
سوالم در خصوص اعداد کاتالانه: صد بار! متن کتاب گریمالدی رو خوندم و اصلا نفهمیدم چ[undefined=undefined]طوری جواب مسئله صفحه شطرنجی n*n و تعداد مسیرها از مبدآ تا نقطه (n,n) بدون اینکه بخوایم از قطر رد بشیم میشه اعداد کاتالان[/undefined](البته هیچی هم که نه یه کوچولو درک کردم ولی هنوز ابهام دارم).
یا بهتر بگم اثبات فرمول اعداد کاتالان و اینکه چرا جواب مسئله ای که در بالا گفتم میشه اعداد کاتالان رو نفهمیدم.شاید دلیلش از این جهت برام غیر قابل قبوله که تو کتاب گریمالدی گفته یه تناظر نظیر به نظیر بین تعداد جایگشت های n تا R و n تا U به طوری که در قطعه اول اون، تعداد U ها بیشتر از R میشه با تعداد جایگشت هایی که ما ۴ تا R رو با ۶ تا U میچینیم وجود داره و من دلیل این حرف رو نمیفهمم.
اگر کسی کمکم کنه که بفهممش وافعا دعا گوش هستم.

۰
ارسال:
  

Jooybari پاسخ داده:

RE: سوال در مورد اعداد کاتالان؛ دلیل جواب مسئله صفحه شطرنجی n*n

سلام. این سوال قبلاً در فروم مطرح شده بود. مشابه آخرین تمرین فصل اول کتاب گریمالدی حل میشه. خیلی راحت به مقدار [tex]\binom{2n}{n}-\binom{2n}{n-1}=\frac{1}{n 1}\binom{2n}{n}[/tex] می رسیم.

۰
ارسال:
  

Fardad-A پاسخ داده:

RE: سوال در مورد اعداد کاتالان؛ دلیل جواب مسئله صفحه شطرنجی n*n

(۲۲ شهریور ۱۳۹۲ ۰۱:۳۶ ق.ظ)amogharrebi نوشته شده توسط:  عرض ادب دارم خدمت همه دوستان؛
یه سوالی یکی دو هفته ای هست که ذهن منو مشغول به خودش کرده و واقعا ممنون میشم یه بزرگواری پیدا بشه و منو از این آمپاس شدید در بیاره!!!!HuhHuh
سوالم در خصوص اعداد کاتالانه: صد بار! متن کتاب گریمالدی رو خوندم و اصلا نفهمیدم چ[undefined=undefined]طوری جواب مسئله صفحه شطرنجی n*n و تعداد مسیرها از مبدآ تا نقطه (n,n) بدون اینکه بخوایم از قطر رد بشیم میشه اعداد کاتالان[/undefined](البته هیچی هم که نه یه کوچولو درک کردم ولی هنوز ابهام دارم).
یا بهتر بگم اثبات فرمول اعداد کاتالان و اینکه چرا جواب مسئله ای که در بالا گفتم میشه اعداد کاتالان رو نفهمیدم.شاید دلیلش از این جهت برام غیر قابل قبوله که تو کتاب گریمالدی گفته یه تناظر نظیر به نظیر بین تعداد جایگشت های n تا R و n تا U به طوری که در قطعه اول اون، تعداد U ها بیشتر از R میشه با تعداد جایگشت هایی که ما ۴ تا R رو با ۶ تا U میچینیم وجود داره و من دلیل این حرف رو نمیفهمم.
اگر کسی کمکم کنه که بفهممش وافعا دعا گوش هستم.
من درست متوجه سوالتون نشدم.مسئله کاتالان در اصل برای تبدیل n+2 ضلعی محدب به تعدادی مثلث است. ولی در مسئله تعداد مسیر در یک مربع nXn هم به عدد کاتالان میرسیم.
من کتاب گریمالدی را نگاه نکردم ولی یادمه که این مسئله در بیشتر کتابهای گسسته در دو حالت طرح و حل میشود.
حالت اول:از گوشه پایینی سمت چپ به گوشه بالیی سمت راست و با حرکت بسمت راست و بالا.
حالت دوم:همان مسیر بشرطیکه از قطر مربع بالاتر نرویم.

حالت دومی است که ما به عدد کاتالان میرسیم.
معمولا" در حل حالت اول کل حالات بدست میاد و در حالت دوم ما تعداد کل حالات را(که قبلا" حساب کردیم در قسمت اول) بدست میآوریم و تعداد حالات بالای قطری را ازش کم میکنیم تا تعداد مسیر مورد نظرمون بدست بیاد. و میشه همان فرمول اعداد کاتالان.
اگه واضح نبود یا مسئله را اسکن کنید بگذارید یا بگید کدام صفحه یا زیربخش از گریمالدی است. یا منتظر باشید تا دیگر دوستان راهنمایی کنند.

ارسال:
  

amogharrebi پاسخ داده:

RE: سوال در مورد اعداد کاتالان؛ دلیل جواب مسئله صفحه شطرنجی n*n

(۲۲ شهریور ۱۳۹۲ ۱۱:۳۸ ق.ظ)Fardad-A نوشته شده توسط:  
(22 شهریور ۱۳۹۲ ۰۱:۳۶ ق.ظ)amogharrebi نوشته شده توسط:  عرض ادب دارم خدمت همه دوستان؛
یه سوالی یکی دو هفته ای هست که ذهن منو مشغول به خودش کرده و واقعا ممنون میشم یه بزرگواری پیدا بشه و منو از این آمپاس شدید در بیاره!!!!HuhHuh
سوالم در خصوص اعداد کاتالانه: صد بار! متن کتاب گریمالدی رو خوندم و اصلا نفهمیدم چ[undefined=undefined]طوری جواب مسئله صفحه شطرنجی n*n و تعداد مسیرها از مبدآ تا نقطه (n,n) بدون اینکه بخوایم از قطر رد بشیم میشه اعداد کاتالان[/undefined](البته هیچی هم که نه یه کوچولو درک کردم ولی هنوز ابهام دارم).
یا بهتر بگم اثبات فرمول اعداد کاتالان و اینکه چرا جواب مسئله ای که در بالا گفتم میشه اعداد کاتالان رو نفهمیدم.شاید دلیلش از این جهت برام غیر قابل قبوله که تو کتاب گریمالدی گفته یه تناظر نظیر به نظیر بین تعداد جایگشت های n تا R و n تا U به طوری که در قطعه اول اون، تعداد U ها بیشتر از R میشه با تعداد جایگشت هایی که ما ۴ تا R رو با ۶ تا U میچینیم وجود داره و من دلیل این حرف رو نمیفهمم.
اگر کسی کمکم کنه که بفهممش وافعا دعا گوش هستم.
من درست متوجه سوالتون نشدم.مسئله کاتالان در اصل برای تبدیل n+2 ضلعی محدب به تعدادی مثلث است. ولی در مسئله تعداد مسیر در یک مربع nXn هم به عدد کاتالان میرسیم.
من کتاب گریمالدی را نگاه نکردم ولی یادمه که این مسئله در بیشتر کتابهای گسسته در دو حالت طرح و حل میشود.
حالت اول:از گوشه پایینی سمت چپ به گوشه بالیی سمت راست و با حرکت بسمت راست و بالا.
حالت دوم:همان مسیر بشرطیکه از قطر مربع بالاتر نرویم.

حالت دومی است که ما به عدد کاتالان میرسیم.
معمولا" در حل حالت اول کل حالات بدست میاد و در حالت دوم ما تعداد کل حالات را(که قبلا" حساب کردیم در قسمت اول) بدست میآوریم و تعداد حالات بالای قطری را ازش کم میکنیم تا تعداد مسیر مورد نظرمون بدست بیاد. و میشه همان فرمول اعداد کاتالان.
اگه واضح نبود یا مسئله را اسکن کنید بگذارید یا بگید کدام صفحه یا زیربخش از گریمالدی است. یا منتظر باشید تا دیگر دوستان راهنمایی کنند.

بسیار متشکرم از شما دوست عزیز که وقت گذاشتین برای سوال من.
باید خدمتتون عرض کنم که طبق فرمایش شما اگه بخوام سوالم رو واضح تر بگم اینکه من دقیقا نمیدونم تعداد حالاتی که ما از بالای قطر می گذریم(حالاتی که برای ما غیر قابل قبوله) چجوری بدست میاد؟ کتاب توضیحاتی داده ولی به قول معروف دوزاری من نیفتاده.

(۲۲ شهریور ۱۳۹۲ ۱۱:۳۸ ق.ظ)Fardad-A نوشته شده توسط:  
(22 شهریور ۱۳۹۲ ۰۱:۳۶ ق.ظ)amogharrebi نوشته شده توسط:  عرض ادب دارم خدمت همه دوستان؛
یه سوالی یکی دو هفته ای هست که ذهن منو مشغول به خودش کرده و واقعا ممنون میشم یه بزرگواری پیدا بشه و منو از این آمپاس شدید در بیاره!!!!HuhHuh
سوالم در خصوص اعداد کاتالانه: صد بار! متن کتاب گریمالدی رو خوندم و اصلا نفهمیدم چ[undefined=undefined]طوری جواب مسئله صفحه شطرنجی n*n و تعداد مسیرها از مبدآ تا نقطه (n,n) بدون اینکه بخوایم از قطر رد بشیم میشه اعداد کاتالان[/undefined](البته هیچی هم که نه یه کوچولو درک کردم ولی هنوز ابهام دارم).
یا بهتر بگم اثبات فرمول اعداد کاتالان و اینکه چرا جواب مسئله ای که در بالا گفتم میشه اعداد کاتالان رو نفهمیدم.شاید دلیلش از این جهت برام غیر قابل قبوله که تو کتاب گریمالدی گفته یه تناظر نظیر به نظیر بین تعداد جایگشت های n تا R و n تا U به طوری که در قطعه اول اون، تعداد U ها بیشتر از R میشه با تعداد جایگشت هایی که ما ۴ تا R رو با ۶ تا U میچینیم وجود داره و من دلیل این حرف رو نمیفهمم.
اگر کسی کمکم کنه که بفهممش وافعا دعا گوش هستم.
من درست متوجه سوالتون نشدم.مسئله کاتالان در اصل برای تبدیل n+2 ضلعی محدب به تعدادی مثلث است. ولی در مسئله تعداد مسیر در یک مربع nXn هم به عدد کاتالان میرسیم.
من کتاب گریمالدی را نگاه نکردم ولی یادمه که این مسئله در بیشتر کتابهای گسسته در دو حالت طرح و حل میشود.
حالت اول:از گوشه پایینی سمت چپ به گوشه بالیی سمت راست و با حرکت بسمت راست و بالا.
حالت دوم:همان مسیر بشرطیکه از قطر مربع بالاتر نرویم.

حالت دومی است که ما به عدد کاتالان میرسیم.
معمولا" در حل حالت اول کل حالات بدست میاد و در حالت دوم ما تعداد کل حالات را(که قبلا" حساب کردیم در قسمت اول) بدست میآوریم و تعداد حالات بالای قطری را ازش کم میکنیم تا تعداد مسیر مورد نظرمون بدست بیاد. و میشه همان فرمول اعداد کاتالان.
اگه واضح نبود یا مسئله را اسکن کنید بگذارید یا بگید کدام صفحه یا زیربخش از گریمالدی است. یا منتظر باشید تا دیگر دوستان راهنمایی کنند.


فایل‌(های) پیوست شده




یافتن تمامی ارسال‌های این کاربر



موضوع‌های مرتبط با این موضوع...
موضوع: نویسنده پاسخ: بازدید: آخرین ارسال
  Find Beautiful Womans from your city for night zara.k ۰ ۱۸۶ ۰۹ مرداد ۱۴۰۳ ۰۶:۱۹ ق.ظ
آخرین ارسال: zara.k
  Search Beautiful Girls in your city for night crozo1989 ۰ ۱۷۵ ۰۸ مرداد ۱۴۰۳ ۰۴:۱۹ ب.ظ
آخرین ارسال: crozo1989
  Prettys Girls from your city for night hosain3000 ۰ ۱۷۸ ۰۶ مرداد ۱۴۰۳ ۰۱:۴۷ ق.ظ
آخرین ارسال: hosain3000
  سوال در مورد صفحه بندی در سیستم عامل Azadam ۱ ۱,۸۸۱ ۱۳ دى ۱۴۰۰ ۱۱:۰۴ ق.ظ
آخرین ارسال: Azadam
  کمک به حل مسئله Moha33 ۰ ۱,۳۴۲ ۰۵ تیر ۱۴۰۰ ۰۹:۴۲ ق.ظ
آخرین ارسال: Moha33
  دو سوال در مورد درخت BST(درخت جستجوی دودویی) امیدوار ۳ ۵,۶۵۶ ۱۰ دى ۱۳۹۹ ۱۲:۰۴ ق.ظ
آخرین ارسال: marzi.pnh
  تعداد جواب mostafaheydar1370 ۲۱ ۱۹,۶۹۴ ۰۱ مهر ۱۳۹۹ ۱۱:۴۱ ب.ظ
آخرین ارسال: miinaa
  متن به هم ریخته در نرم افزار Notepad HAMID3F ۱۵ ۲۳,۲۳۷ ۱۷ شهریور ۱۳۹۹ ۰۸:۲۶ ق.ظ
آخرین ارسال: rezasedghi100
  سوال در مورد سهمیه رتبه اولی rezamim2020 ۰ ۲,۲۵۱ ۱۶ شهریور ۱۳۹۹ ۰۴:۳۵ ب.ظ
آخرین ارسال: rezamim2020
  صفحه چند سطحی Flash1 ۰ ۱,۸۰۳ ۱۰ تیر ۱۳۹۹ ۰۵:۵۸ ب.ظ
آخرین ارسال: Flash1

پرش به انجمن:

Can I see some ID?

به خاطر سپاری رمز Cancel

Feeling left out?


نگران نباش، فقط روی این لینک برای ثبت نام کلیک کن. رمزت رو فراموش کردی؟ اینجا به یادت میاریم! close

رمزت رو فراموش کردی؟

Feeling left out?


نگران نباش، فقط روی این لینک برای ثبت نام کلیک کن. close