زمان کنونی: ۰۳ دى ۱۴۰۳, ۰۴:۰۵ ب.ظ مهمان گرامی به انجمن مانشت خوش آمدید. برای استفاده از تمامی امکانات انجمن می‌توانید عضو شوید.
گزینه‌های شما (ورودثبت نام)

مرتبه زمانی یک تابع بازگشتی

ارسال:
  

amin222 پرسیده:

مرتبه زمانی یک تابع بازگشتی

با سلام و آرزوی موفقیت برای تمام دوستان
میخواستم بدونم برای بدست آوردن مرتبه زمانی این تابع بازگشتی
چجوری باید عمل کرد.

[tex]T(n)=T(n-2) 1/lg(n)[/tex]
نقل قول این ارسال در یک پاسخ

۱
ارسال:
  

matu پاسخ داده:

مرتبه زمانی یک تابع بازگشتی

[تصویر:  200030_Capture3.png]
نقل قول این ارسال در یک پاسخ

۱
ارسال:
  

M0TRIX پاسخ داده:

RE: مرتبه زمانی یک تابع بازگشتی

چرا من این بخش رو هر چجقدر میخونم متوجه نمیشم ؟

شما چقدر راحت حل میکنید.

واقعا حسرت تو دلم موند این بخش رو یاد بگیرم.

استاد ما هم زیاد بلد نیست این بخشو. از رو کتاب هم ادم یاد نمیگیره.

واقعا باید چیکار کنه ادم
نقل قول این ارسال در یک پاسخ

۰
ارسال:
  

vojoudi پاسخ داده:

RE: مرتبه زمانی یک تابع بازگشتی

آره نمیتونم دقیق بگم فقط حدود میتونم بگم.
نقل قول این ارسال در یک پاسخ

۰
ارسال:
  

Farid_Feyzi پاسخ داده:

RE: مرتبه زمانی یک تابع بازگشتی

با توجه به سری های زیر

[tex]1/1 1/2 1/3 ... 1/n=logn[/tex]

[tex]1/1 1/2 1/3 ... 1/logn=loglogn[/tex]

میشه اینجوری گفت:

[tex]\sum_{i=2}^{i=n/2} 1/log(2i)<\sum_{i=1}^{i=n} 1/log(i)=O(loglogn)[/tex]
نقل قول این ارسال در یک پاسخ

ارسال:
  

arta.66 پاسخ داده:

RE: مرتبه زمانی یک تابع بازگشتی

(۰۷ مرداد ۱۳۹۲ ۰۹:۴۰ ب.ظ)Farid_Feyzi نوشته شده توسط:  با توجه به سری های زیر

[tex]1/1 1/2 1/3 ... 1/n=logn[/tex]

[tex]1/1 1/2 1/3 ... 1/logn=loglogn[/tex]

میشه اینجوری گفت:

[tex]\sum_{i=2}^{i=n/2} 1/log(2i)<\sum_{i=1}^{i=n} 1/log(i)=O(loglogn)[/tex]

من دیگه حرفی نمیزنم جواب آقا فرید حجته!! ممنون بابت وقتی که می ذارین
یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

ارسال:
  

vojoudi پاسخ داده:

RE: مرتبه زمانی یک تابع بازگشتی

(۰۷ مرداد ۱۳۹۲ ۰۹:۴۰ ب.ظ)Farid_Feyzi نوشته شده توسط:  با توجه به سری های زیر

[tex]1/1 1/2 1/3 ... 1/n=logn[/tex]

[tex]1/1 1/2 1/3 ... 1/logn=loglogn[/tex]

تا اینجا درسته ولی ! من بدست آوردم
[tex]\sum_{i=1}^{\frac{n}{2}}(\frac{1}{log(2i)})=\frac{1}{1 log(1)} \frac{1}{1 log(2)} \frac{1}{1 log(3)} ... \frac{1}{1 log(\frac{n}{2})}[/tex]

تا اینجا هم که درسته ؟ اوکی ؟ خوب من چه کار کردم ؟ اومدم به جای همه حملات این سری گذاشتم : [tex](\frac{1}{1 log(\frac{n}{2})})[/tex]
[tex]\sum_{i=1}^{\frac{n}{2}}(\frac{1}{log(2i)})= \underbrace{\frac{1}{1 log(1)} \frac{1}{1 log(2)} \frac{1}{1 log(3)} ... \frac{1}{1 log(\frac{n}{2})}}_\frac{n}{2}[/tex]

سری ما [tex]\frac{n}{2}[/tex] جمله داره پس اگر بخواهیم کمترین مقدار رو حساب کنیم (حد پایین) میشود :

[tex]\frac{n}{2}(\frac{1}{1 log(\frac{n}{2})})=\frac{n}{2 2log(\frac{n}{2})}\in \Omega (\frac{n}{log(n)})[/tex]

من ثابت کردم که کمتر از [tex] \Omega (\frac{n}{log(n)})[/tex] نمیتونه بشه. تا اینجا هم اوکی ؟
شما ثابت کردی که پیچیدگی میشود : [tex]O(loglog(n))[/tex] در صورتی که [tex]loglog(n) < \frac{n}{log(n)}[/tex]
و این نشون میده که جواب شما صحیح نیست. Dodgy
یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

ارسال:
  

hoda ahmadi پاسخ داده:

RE: مرتبه زمانی یک تابع بازگشتی

(۰۷ مرداد ۱۳۹۲ ۱۱:۳۲ ب.ظ)vojoudi نوشته شده توسط:  
(07 مرداد ۱۳۹۲ ۰۹:۴۰ ب.ظ)Farid_Feyzi نوشته شده توسط:  با توجه به سری های زیر

[tex]1/1 1/2 1/3 ... 1/n=logn[/tex]

[tex]1/1 1/2 1/3 ... 1/logn=loglogn[/tex]

تا اینجا درسته ولی ! من بدست آوردم
[tex]\sum_{i=1}^{\frac{n}{2}}(\frac{1}{log(2i)})=\frac{1}{1 log(1)} \frac{1}{1 log(2)} \frac{1}{1 log(3)} ... \frac{1}{1 log(\frac{n}{2})}[/tex]

تا اینجا هم که درسته ؟ اوکی ؟ خوب من چه کار کردم ؟ اومدم به جای همه حملات این سری گذاشتم : [tex](\frac{1}{1 log(\frac{n}{2})})[/tex]
[tex]\sum_{i=1}^{\frac{n}{2}}(\frac{1}{log(2i)})= \underbrace{\frac{1}{1 log(1)} \frac{1}{1 log(2)} \frac{1}{1 log(3)} ... \frac{1}{1 log(\frac{n}{2})}}_\frac{n}{2}[/tex]

سری ما [tex]\frac{n}{2}[/tex] جمله داره پس اگر بخواهیم کمترین مقدار رو حساب کنیم (حد پایین) میشود :

[tex]\frac{n}{2}(\frac{1}{1 log(\frac{n}{2})})=\frac{n}{2 2log(\frac{n}{2})}\in \Omega (\frac{n}{log(n)})[/tex]

من ثابت کردم که کمتر از [tex] \Omega (\frac{n}{log(n)})[/tex] نمیتونه بشه. تا اینجا هم اوکی ؟
شما ثابت کردی که پیچیدگی میشود : [tex]O(loglog(n))[/tex] در صورتی که [tex]loglog(n) < \frac{n}{log(n)}[/tex]
و این نشون میده که جواب شما صحیح نیست. Dodgy

با رسم درخت جواب همانlog log n
یافتن تمامی ارسال‌های این کاربر
نقل قول این ارسال در یک پاسخ

۰
ارسال:
  

ریحان پاسخ داده:

RE: مرتبه زمانی یک تابع بازگشتی

وای بچه ها لطفا به فارسی هم کمی در مورو مراحل کار توضیح بدین.منم متوجه نشدم چی به چیه
نقل قول این ارسال در یک پاسخ



موضوع‌های مرتبط با این موضوع...
موضوع: نویسنده پاسخ: بازدید: آخرین ارسال
Exclamation سلام لطفاً یکی به من بگه مرتبه زمانی ها چطوری به log تبدیل میشن فرمول داره؟؟ Azadam ۶ ۵,۰۴۴ ۰۶ دى ۱۴۰۰ ۰۹:۰۲ ق.ظ
آخرین ارسال: Soldier's life
  مرتبه ایجاد درخت rad.bahar ۱ ۳,۴۱۶ ۳۰ مهر ۱۳۹۹ ۰۳:۳۴ ب.ظ
آخرین ارسال: rad.bahar
  مرتبه شبه کد rad.bahar ۱ ۲,۳۷۳ ۲۲ مهر ۱۳۹۹ ۰۹:۳۲ ب.ظ
آخرین ارسال: BBumir
  حل مساله مرتبه زمانی حلقه های تو در تو sarashahi ۱۶ ۲۳,۲۶۹ ۱۹ خرداد ۱۳۹۹ ۰۱:۱۶ ب.ظ
آخرین ارسال: gillda
  تابع مولد ss311 ۰ ۱,۵۱۳ ۲۶ اردیبهشت ۱۳۹۹ ۱۲:۴۹ ب.ظ
آخرین ارسال: ss311
  مرتبه زمانی Sanazzz ۱۷ ۲۱,۸۱۹ ۰۹ اردیبهشت ۱۳۹۹ ۰۶:۴۶ ب.ظ
آخرین ارسال: mohsentafresh
  مرتبه زمانی یافتن قطر Sepideh96 ۲ ۳,۸۵۲ ۰۸ آذر ۱۳۹۸ ۰۴:۳۴ ب.ظ
آخرین ارسال: erfan30
  مرتبه مانی Sanazzz ۳ ۳,۷۷۰ ۰۵ خرداد ۱۳۹۸ ۰۲:۳۶ ب.ظ
آخرین ارسال: Sanazzz
  مرتبه زمانی Sanazzz ۰ ۲,۰۶۴ ۰۴ بهمن ۱۳۹۷ ۰۵:۴۱ ب.ظ
آخرین ارسال: Sanazzz
  مشکل در محاسبه مرتبه ایک سوال Mr.R3ZA ۰ ۱,۹۰۰ ۲۴ خرداد ۱۳۹۷ ۰۱:۰۳ ب.ظ
آخرین ارسال: Mr.R3ZA

پرش به انجمن:

Can I see some ID?

به خاطر سپاری رمز Cancel

Feeling left out?


نگران نباش، فقط روی این لینک برای ثبت نام کلیک کن. رمزت رو فراموش کردی؟ اینجا به یادت میاریم! close

رمزت رو فراموش کردی؟

Feeling left out?


نگران نباش، فقط روی این لینک برای ثبت نام کلیک کن. close