زمان کنونی: ۰۵ دى ۱۴۰۳, ۰۹:۵۳ ق.ظ مهمان گرامی به انجمن مانشت خوش آمدید. برای استفاده از تمامی امکانات انجمن می‌توانید عضو شوید.
گزینه‌های شما (ورودثبت نام)

تعداد اعداد یک مجموعه (اصل شمول)

ارسال:
  

one hacker alone پرسیده:

تعداد اعداد یک مجموعه (اصل شمول)

با یاد خدا
سلام دوستان
دو تا سوال دارم تو بحث شمول ساده هستند اما خوب چون بحث رو متوجه نشدم نمیتونم حلش کنم

۱) تعداد اعداد مجموعه {۱۰۰۰,...,۱,۲} را بدست اورید بطوریکه نه بر ۴ و نه بر۱۰ بخش پذیر باشند




۲) تعداد اعداد مجموعه {۱۰۰۰,...,۱,۲} را بدست اورید بطوریکه نه بر ۳ و نه بر ۵ و نه بر ۸ بخش پذیر باشند

۰
ارسال:
  

yaser_ilam_com پاسخ داده:

تعداد اعداد یک مجموعه (اصل شمول)

در مورد سوال اول ۱۰۰۰ عدد داریم :

برای اعدادی که بر ۱۰ بخش پذیر باشد [tex]\left \{ 10,20,30,40,... \right \}[/tex] که معادل ۱۰۰ عدد می باشد یعنی اعداد به فرم [tex]y=10x , x\in \left \{ 1,2,....,100 \right \}[/tex]
اعداد بخش پذیر بر ۴ باشد داریم [tex]y=4x , x\in \left \{ 1,2,....,250\right \}[/tex] که ۲۵۰ عدد می باشد جمع آنها معادل ۳۵۰

حال ما باید اعداد مشترک بین آنها را بیرون بیاوریم که برای اعداد ۱۰۰ تایی ۵ عدد داریم که معادل اعداد ۲۰ و ۴۰ و ۶۰ و ۸۰ و ۱۰۰ ... که برابر با ۵۰ عدد می باشد حال با مقدار ۳۵۰ کسر میشه میشه ۳۰۰ میشه

حال عکس این مطلب را در سوال از ما خواسته است لذا -[tex]1000-300=700[/tex]


در مورد سوال دوم همین کار را می کنیم :

اعداد بر ۳ بخش پذیر به فرم [tex]y=3x , x\in \left \{ 1,2,....,333 \right \}[/tex] لذا داریم ۳۳۳ عدد

اعداد بر ۵ بخش پذیر به فرم [tex]y=5x , x\in \left \{ 1,2,....,200 \right \}[/tex] لذا داریم ۲۰۰ عدد

اعداد بر ۸ بخش پذیر به فرم [tex]y=8x , x\in \left \{ 1,2,....,125 \right \}[/tex] لذا داریم ۱۲۵ عدد

در مجموع [tex]333 125 200=658[/tex] حال اعداد مشترک را بیرون اورده و به این مقدار اضافه می کنیم و مقدار حاصل را از ۱۰۰۰ کم .

اعداد مشترک بین ۳ و ۵ ،ب.م.م بین این دو عدد ۱۵ است که معادل ۶۶ عدد
اعداد مشترک بین ۳ و ۸ ،ب.م.م بین این دو عدد ۲۴ است که معادل ۴۱ عدد
اعداد مشترک بین ۵ و ۸ ،ب.م.م بین این دو عدد ۴۰ است که معادل ۲۵ عدد
اعداد مشترک بین۳ و ۵ و ۸ ،ب.م.م بین این دو عدد ۱۲۰ است که معادل ۸ عدد
حال جمع این اعداد معادل ۱۳۲ عدد مشترک بین این اعداد ۵۲۶=۱۳۲-۶۵۸ حال با ۸ جمع کنیم میشه ۵۳۴ [tex]1000-534=466[/tex]



(۱۶ اردیبهشت ۱۳۹۱ ۱۲:۴۰ ب.ظ)nomad:D نوشته شده توسط:  سوال ۱: یک بار ۱۰۰۰ رو بر ۴ تقسیم میکنیم و یک بار بر ۱۰ و یک بار بر ۴۰
یکبار بر ۴۰ نه دوست من ، باید بزرگترین مخرج مشترک را پیدا کرد اینجا میشه عدد ۲۰

۰
ارسال:
  

Jooybari پاسخ داده:

تعداد اعداد یک مجموعه (اصل شمول)

سلام. فکر کنم توی محاسبات اشتباه کردین.
سوال اول:
اعداد بخش پذیر بر ۱۰ برابره ۱۰۰ میشه. بخشپذیر بر ۴ برابره ۲۵۰ میشه. بخشپذیر بر ب.م.م. ۴ و ۱۰ که همون ۲۰ هست برابره ۵۰ میشه. حواب مسئلمون میشه:

[tex]p=n(S)-n(A)-n(B) n(A\cap B)=1000-100-250 50=700[/tex]

سوال دوم:
اعداد بخشپذیر بر ۳ میشه ۳۳۳ (جزء صحیح تقسیم ۱۰۰۰ بر ۳) بخشپذیر بر ۵ میشه ۲۰۰ و بخشپذیر بر ۸ میشه ۱۲۵
اعداد بخشپذیر بر ۳ و ۵ میشه ۶۶ و بخشپذیر بر ۳ و ۸ میشه ۴۱ و بخشپذیر بر ۵ و ۸ میشه ۲۵
اعداد بخشپذیر بر ۳ و ۵ و ۸ میشه ۸
جواب مسئله:

[tex]q=n(S)-n(A)-n(B)-n© n(A\cap B) n(A\cap C) n(B\cap C)-n(A\cap B\cap C)=1000-333-200-125 66 41 25-8=466[/tex]

۰
ارسال:
  

yaser_ilam_com پاسخ داده:

تعداد اعداد یک مجموعه (اصل شمول)

ممنون دوست من یه لحظه حواسم پرت شد اشتباه محاسبه شد اصلاح کردم

در مورد سوال اول شما هم عدد آخر رو اشتباه زدی میشه ۶۰۰

ارسال:
  

Jooybari پاسخ داده:

RE: تعداد اعداد یک مجموعه (اصل شمول)

(۱۶ اردیبهشت ۱۳۹۱ ۰۶:۰۳ ب.ظ)yaser_ilam_com نوشته شده توسط:  ممنون دوست من یه لحظه حواسم پرت شد اشتباه محاسبه شد اصلاح کردم

در مورد سوال اول شما هم عدد آخر رو اشتباه زدی میشه ۶۰۰

همون ۷۰۰ درسته. اشتراک دو مقدارو باید به مجموعه اضافه کنیم. چون دوبار کم کردیم. برای مثال عدد ۲۰ هم توی مجموعه اول هست و هم توی مجموعه دوم. دو بار کم شده. یکبار باید اضافه بشه. اضافه شدنش هم با اشافه کردن اشتراک دو مجموعه درست میشه.
یافتن تمامی ارسال‌های این کاربر

۰
ارسال:
  

one hacker alone پاسخ داده:

تعداد اعداد یک مجموعه (اصل شمول)

ممنون از راهنماییتون
در جواب اول ما بعد از اینکه متوجه شدیم مجموع اعدادی که به ۴ یا ۱۰ بخش پذیر هست ۳۵۰ تا هستن و بعد قرار شد تو این ۳۵۰ تا اعدادی رو گیر بیاریم که بر هر دو بخش پذیر باشن که این مرحله رو من متوجه نشدم که این کار رو چجوری انجام بدیم

ارسال:
  

yaser_ilam_com پاسخ داده:

RE: تعداد اعداد یک مجموعه (اصل شمول)

(۱۶ اردیبهشت ۱۳۹۱ ۰۸:۱۴ ب.ظ)one hacker alone نوشته شده توسط:  ممنون از راهنماییتون
در جواب اول ما بعد از اینکه متوجه شدیم مجموع اعدادی که به ۴ یا ۱۰ بخش پذیر هست ۳۵۰ تا هستن و بعد قرار شد تو این ۳۵۰ تا اعدادی رو گیر بیاریم که بر هر دو بخش پذیر باشن که این مرحله رو من متوجه نشدم که این کار رو چجوری انجام بدیم
کوچکترین مخرج مشترک رو باید پیدا کنی دوست من

از عدد بزرگ شروع کن و هر بار به مقدار خودش بهش اضافه کن تا عددی رو پیدا کنی که به هر دو بخش پذیر باشه
یافتن تمامی ارسال‌های این کاربر

۰
ارسال:
  

one hacker alone پاسخ داده:

تعداد اعداد یک مجموعه (اصل شمول)

خوب بعد از بدست اوردم عدد مشترک که همون ۲۰ هست ۵۰ از کجا اومد؟

ارسال:
  

yaser_ilam_com پاسخ داده:

RE: تعداد اعداد یک مجموعه (اصل شمول)

(۱۷ اردیبهشت ۱۳۹۱ ۱۲:۳۱ ق.ظ)one hacker alone نوشته شده توسط:  خوب بعد از بدست اوردم عدد مشترک که همون ۲۰ هست ۵۰ از کجا اومد؟
دوست من ۱۰۰۰ تا عدد داریم تقسیم بر ۲۰ میشه ۵۰ عدد که بر هر دو عدد بخش پذیر است
یافتن تمامی ارسال‌های این کاربر

۰
ارسال: #۱۰
  

Jooybari پاسخ داده:

تعداد اعداد یک مجموعه (اصل شمول)

چون مجموعمون از ۱ شروع میشه کارمون آسونتره. تعداد مضارب یک عدد که کوچکتر از ماکزیمم مجموعمون باشه میشه جزءصحیح تقسیم ماکزیمم مجموعه بر اون عدد. البته به شرطی که اختلاف اعضای مجموعه ۱ باشه(مثل مجموعه ی مثال). اگه از ۱ شروع نمیشد و مثلاً از k شروع میشد باید جزءصحیح تقسیم ماکزیمم از عدد رو از جزء صحیح تقسیم k از عدد کم میکردیم. مثلا اگه مجموعمون از ۴۲ تا ۱۰۰ بود و تعداد مضارب ۵ رو میخواستیم میشد:

[tex]m=[\frac{100}{5}]-[\frac{42}{5}]=20-8=12[/tex]

۰
ارسال: #۱۱
  

one hacker alone پاسخ داده:

تعداد اعداد یک مجموعه (اصل شمول)

سوال به این راحتی گیج شدم
صورت سوال میگه یه سری عدد توی مجموعه ۱۰۰۰ عددی هست که هم ۴ و هم بر ۱۰ عدد بخش پذیر هست که ما اومدیم این عدد ها رو گیر اوردیم شمردیم شده ۵۰ تا حالا میگیم خوب این ۵۰ تا به کنار میمونه ۹۵۰ تا دیگه

ارسال: #۱۲
  

yaser_ilam_com پاسخ داده:

RE: تعداد اعداد یک مجموعه (اصل شمول)

(۱۷ اردیبهشت ۱۳۹۱ ۱۰:۴۴ ب.ظ)one hacker alone نوشته شده توسط:  سوال به این راحتی گیج شدم
صورت سوال میگه یه سری عدد توی مجموعه ۱۰۰۰ عددی هست که هم ۴ و هم بر ۱۰ عدد بخش پذیر هست که ما اومدیم این عدد ها رو گیر اوردیم شمردیم شده ۵۰ تا حالا میگیم خوب این ۵۰ تا به کنار میمونه ۹۵۰ تا دیگه
گفته نه بر ۴ و نه بر ۱۰ یعنی نه(هم بر ۴ و هم بر ۱۰) ،اینجا نه یعنی نقیض که میشه همون فرمولی که دوستمون قرار داده بود
یافتن تمامی ارسال‌های این کاربر

۰
ارسال: #۱۳
  

one hacker alone پاسخ داده:

تعداد اعداد یک مجموعه (اصل شمول)

بله ممنون
پس ما باید اعدادی که بر ۴ بخش پذیر اند و اعدادی که بر ۱۰ بخش پذیر اند رو گیر بیارم و اعدادی که بر این دو بخش پذیراند رو از این مجموعه کم کنیم که نتیجه میشه ۳۰۰

حالا صورت سوال ۱ رو جوری تغییر بدین که همون ۳۵۰ تا بشه یعنی در نهایت داشته باشیم ۱۰۰۰ منهای ۳۵۰ برابر ۶۵۰ بشه

ارسال: #۱۴
  

yaser_ilam_com پاسخ داده:

RE: تعداد اعداد یک مجموعه (اصل شمول)

(۱۸ اردیبهشت ۱۳۹۱ ۰۷:۵۱ ق.ظ)one hacker alone نوشته شده توسط:  بله ممنون
پس ما باید اعدادی که بر ۴ بخش پذیر اند و اعدادی که بر ۱۰ بخش پذیر اند رو گیر بیارم و اعدادی که بر این دو بخش پذیراند رو از این مجموعه کم کنیم که نتیجه میشه ۳۰۰

حالا صورت سوال ۱ رو جوری تغییر بدین که همون ۳۵۰ تا بشه یعنی در نهایت داشته باشیم ۱۰۰۰ منهای ۳۵۰ برابر ۶۵۰ بشه
همونطور دوستمون گفتن باید صورت سوال رو تغییر داد ببین ما یه بار ۴ و یه بار ۱۰ رو حساب کنیم آنچه بر هر دو بخش پذیر هست رو دوبار شمردیم که یکبار باید کم بشه لذا مشترک بین این دو را میابیم تا کم کنیم اگه انچه شما بخوایید همان طور دوستمون گفتن باید صورت سوال رو عوض کنیم
یافتن تمامی ارسال‌های این کاربر

۰
ارسال: #۱۵
  

Jooybari پاسخ داده:

تعداد اعداد یک مجموعه (اصل شمول)

باید صورت سوال رو به کلی عوض کرد. ببینید ما اول تعداد مضارب ۴ رو حساب کردیم. ۱۰ رو هم همینطور. این تعداد مشخص شده، تعداد اعضای دو مجموعه هستن. حالا ما تعداد اعضای اجتماعشونو میخاهیم. یعنی مجموع دو تعداد منهای تعداد اعضای مجموعه اشتراک. این اشتراک، مجموعه ایه که دوبار شمردیم. باید کم بشه. اصول شمارش یه قواعدی هستن که سرعت رسیدن به جوابو زیاد میکنن و توی محاسبات یه تعداد داده به ما میدن که به جواب مربوطه ولی جواب نیست. این ۳۵۰ هم از همین نوعه.
اگه صورت سوال اینجوری تغییر کنه که تعداد مجموعه اعدادی رو بخاد که بین ۱ و ۱۰۰۰ باشن به شرطی که مضرب ۴ و ۱۰ نباشن یا مضرب ب.م.م ۴ و ۱۰ (۲۰) باشن اون موقع باید اشتراک رو دوبار به مجموعمون اضافه کرد و جوابمون میشه ۷۵۰/



موضوع‌های مرتبط با این موضوع...
موضوع: نویسنده پاسخ: بازدید: آخرین ارسال
  تعداد برگ درخت؟؟؟؟؟؟؟ rad.bahar ۴ ۴,۹۲۴ ۱۵ آذر ۱۴۰۲ ۱۱:۵۳ ق.ظ
آخرین ارسال: mohamadrra
  مجموعه تمارین و سوالات امتحانی درس طراحی الگوریتم دانشگاه MIT (سال ۲۰۰۰-۲۰۱۲) Farid_Feyzi ۵ ۷,۹۰۷ ۳۰ آبان ۱۳۹۹ ۱۰:۱۵ ب.ظ
آخرین ارسال: s-taheri
  تعداد جواب mostafaheydar1370 ۲۱ ۱۹,۶۹۳ ۰۱ مهر ۱۳۹۹ ۱۱:۴۱ ب.ظ
آخرین ارسال: miinaa
  اصل لانه کبوتری ss311 ۰ ۱,۲۶۳ ۲۶ اردیبهشت ۱۳۹۹ ۱۲:۳۰ ب.ظ
آخرین ارسال: ss311
  تعداد روش های نوشتن عدد n ss311 ۲ ۳,۴۱۶ ۱۳ بهمن ۱۳۹۸ ۰۵:۲۷ ب.ظ
آخرین ارسال: ss311
  تعداد مسیرها در گراف ss311 ۰ ۲,۰۵۸ ۰۸ بهمن ۱۳۹۸ ۱۲:۴۷ ب.ظ
آخرین ارسال: ss311
  تعداد درخت فراگیر ss311 ۰ ۲,۳۴۳ ۰۶ بهمن ۱۳۹۸ ۰۵:۰۶ ب.ظ
آخرین ارسال: ss311
  تعداد توابع پوشا ss311 ۰ ۲,۱۰۷ ۰۶ بهمن ۱۳۹۸ ۰۴:۵۷ ب.ظ
آخرین ارسال: ss311
  تعداد اعداد ۵ رقمی هم ارز ss311 ۲ ۲,۶۸۱ ۰۶ بهمن ۱۳۹۸ ۰۴:۳۹ ب.ظ
آخرین ارسال: ss311
  تعداد رشته های n بیتی hamedsos ۲ ۳,۱۷۶ ۱۸ آبان ۱۳۹۸ ۰۹:۰۶ ب.ظ
آخرین ارسال: Jooybari

پرش به انجمن:

Can I see some ID?

به خاطر سپاری رمز Cancel

Feeling left out?


نگران نباش، فقط روی این لینک برای ثبت نام کلیک کن. رمزت رو فراموش کردی؟ اینجا به یادت میاریم! close

رمزت رو فراموش کردی؟

Feeling left out?


نگران نباش، فقط روی این لینک برای ثبت نام کلیک کن. close