۰
subtitle
ارسال: #۱
  
عمق عناصر برگ و غیر برگ در درخت
سلام دوستان. این سوال کنکور ارشد ۸۲ هست که من در مورد نحوه پاسخدهی مشکل دارم.
در درختی با n عنصر،تمام عناصر غیربرگ دارای دقیقا دو فرزند هستند.اگر E مجموع عمق برگها و I مجموع عمق عناصر غیربرگ باشد و داشته باشیم:
T(n) = E(T) - I(T)
داریم:
T(n) = T(n-2) + n-2
من منطقی برای حل این سوال پیدا نکردم. ممنون میشم راهنمایی کنید.
در درختی با n عنصر،تمام عناصر غیربرگ دارای دقیقا دو فرزند هستند.اگر E مجموع عمق برگها و I مجموع عمق عناصر غیربرگ باشد و داشته باشیم:
T(n) = E(T) - I(T)
داریم:
T(n) = T(n-2) + n-2
من منطقی برای حل این سوال پیدا نکردم. ممنون میشم راهنمایی کنید.
۰
ارسال: #۲
  
RE: عمق عناصر برگ و غیر برگ در درخت
(۲۷ مهر ۱۳۹۳ ۰۵:۳۵ ب.ظ)ldns0098 نوشته شده توسط: سلام دوستان. این سوال کنکور ارشد ۸۲ هست که من در مورد نحوه پاسخدهی مشکل دارم.
در درختی با n عنصر،تمام عناصر غیربرگ دارای دقیقا دو فرزند هستند.اگر E مجموع عمق برگها و I مجموع عمق عناصر غیربرگ باشد و داشته باشیم: T(n) = E(T) - I(T)
داریم:
T(n) = T(n-2) + n-2
من منطقی برای حل این سوال پیدا نکردم. ممنون میشم راهنمایی کنید.
سلام میتونی فرض کنی مثلا n=7 و با یه تریس کوچولو میبینی گزینه اول درسته فقط
۰
ارسال: #۳
  
Re: RE: عمق عناصر برگ و غیر برگ در درخت
(۲۷ مهر ۱۳۹۳ ۰۶:۰۸ ب.ظ)miladcr7 نوشته شده توسط:(27 مهر ۱۳۹۳ ۰۵:۳۵ ب.ظ)ldns0098 نوشته شده توسط: سلام دوستان. این سوال کنکور ارشد ۸۲ هست که من در مورد نحوه پاسخدهی مشکل دارم.
در درختی با n عنصر،تمام عناصر غیربرگ دارای دقیقا دو فرزند هستند.اگر E مجموع عمق برگها و I مجموع عمق عناصر غیربرگ باشد و داشته باشیم: T(n) = E(T) - I(T)
داریم:
T(n) = T(n-2) + n-2
من منطقی برای حل این سوال پیدا نکردم. ممنون میشم راهنمایی کنید.
سلام میتونی فرض کنی مثلا n=7 و با یه تریس کوچولو میبینی گزینه اول درسته فقط
درسته ولی دقت کردی اگه عدد دیگه ای بذاری به این راحتی حل نمیشه؟ مثلا یازده بذار.به خاطر همین ترجیح میدم منطق حلشو پیدا کنم.
ارسال: #۴
  
RE: عمق عناصر برگ و غیر برگ در درخت
(۲۷ مهر ۱۳۹۳ ۰۶:۱۶ ب.ظ)ldns0098 نوشته شده توسط:(27 مهر ۱۳۹۳ ۰۶:۰۸ ب.ظ)miladcr7 نوشته شده توسط:(27 مهر ۱۳۹۳ ۰۵:۳۵ ب.ظ)ldns0098 نوشته شده توسط: سلام دوستان. این سوال کنکور ارشد ۸۲ هست که من در مورد نحوه پاسخدهی مشکل دارم.
در درختی با n عنصر،تمام عناصر غیربرگ دارای دقیقا دو فرزند هستند.اگر E مجموع عمق برگها و I مجموع عمق عناصر غیربرگ باشد و داشته باشیم: T(n) = E(T) - I(T)
داریم:
T(n) = T(n-2) + n-2
من منطقی برای حل این سوال پیدا نکردم. ممنون میشم راهنمایی کنید.
سلام میتونی فرض کنی مثلا n=7 و با یه تریس کوچولو میبینی گزینه اول درسته فقط
درسته ولی دقت کردی اگه عدد دیگه ای بذاری به این راحتی حل نمیشه؟ مثلا یازده بذار.به خاطر همین ترجیح میدم منطق حلشو پیدا کنم.
خب دقیقا راحتی کار اینه.هر عددی نمیشه گذاشت.مثلا ۶ نمیتونیم بدیم چون عنصر تک فرزند پیدا میشه اکی؟؟
موضوعهای مرتبط با این موضوع... |
|||||
| موضوع: | نویسنده | پاسخ: | بازدید: | آخرین ارسال | |
| تعداد برگ درخت؟؟؟؟؟؟؟ | rad.bahar | ۴ | ۶,۳۴۰ |
۱۵ آذر ۱۴۰۲ ۱۱:۵۳ ق.ظ آخرین ارسال: mohamadrra |
|
| هندسه محاسباتی دی برگ | gholamreza jalili | ۳۰ | ۲۶,۴۶۸ |
۲۳ آبان ۱۴۰۱ ۰۵:۵۳ ب.ظ آخرین ارسال: asma :) |
|
| دو سوال در مورد درخت BST(درخت جستجوی دودویی) | امیدوار | ۳ | ۶,۶۹۸ |
۱۰ دى ۱۳۹۹ ۱۲:۰۴ ق.ظ آخرین ارسال: marzi.pnh |
|
| زمان جستجوی درخت | fateme.sm | ۰ | ۲,۲۹۰ |
۰۶ دى ۱۳۹۹ ۱۰:۴۱ ب.ظ آخرین ارسال: fateme.sm |
|
| مرتبه ایجاد درخت | rad.bahar | ۱ | ۴,۱۶۳ |
۳۰ مهر ۱۳۹۹ ۰۳:۳۴ ب.ظ آخرین ارسال: rad.bahar |
|
| عمق درخت ???? | rad.bahar | ۱ | ۳,۱۸۹ |
۱۱ مهر ۱۳۹۹ ۰۳:۳۱ ب.ظ آخرین ارسال: عزیز دادخواه |
|
| محاسبه ارتفاع درخت.... | baharkhanoom | ۳ | ۹,۳۷۹ |
۰۹ اردیبهشت ۱۳۹۹ ۰۶:۴۸ ب.ظ آخرین ارسال: mohsentafresh |
|
| تعداد درخت فراگیر | ss311 | ۰ | ۲,۸۳۹ |
۰۶ بهمن ۱۳۹۸ ۰۵:۰۶ ب.ظ آخرین ارسال: ss311 |
|
| درخت دسترس پذیری برای شبکه های پتری | αɾια | ۱ | ۳,۰۱۸ |
۰۹ تیر ۱۳۹۸ ۰۶:۳۰ ب.ظ آخرین ارسال: αɾια |
|
| شیوه های دانلود مقالات غیر رایگان | goodzila | ۳۰ | ۴۷,۵۷۳ |
۲۱ فروردین ۱۳۹۸ ۰۶:۳۶ ب.ظ آخرین ارسال: ryaghobi2050 |
|
Can I see some ID?
Feeling left out?
نگران نباش، فقط روی این لینک برای ثبت نام کلیک کن. رمزت رو فراموش کردی؟ اینجا به یادت میاریم! close

