ممیز شناور سال ۸۷ کامپیوتر - نسخهی قابل چاپ |
ممیز شناور سال ۸۷ کامپیوتر - arash691 - 14 دى ۱۳۹۵ ۰۱:۴۳ ب.ظ
دوستان عکس سوال و جواب رو ضمیمه کردم : تو کتاب پوران جوابی که داده اونجایی که تو عکس مشخص کردم و نفهمیدم . یعنی غلط حل نکرده ؟ فاصله بین بزرگترین عدد مثبت و دومین بزرگ ترین عدد مثبت طبق راه حل پوران نباید بصورت زیر باشه ؟ [tex]c\: \: =\: +\max\: =\: 0-11111-1111111111\: =\: +0.1111111111\: \ast2^{11111}\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: d\: =\: pre\: of\: c\: =\: 0\: -\: 11111\: -\: 1111111110\: \: =\: +0.1111111110\: \ast2^{11111}\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: c-d\: =\: +0.0000000001\: \ast2^{11111}=\: 2^{-10}\ast2^{16\: (bias\: 16)}\: =\: 2^6[/tex] |
RE: ممیز شناور سال ۸۷ کامپیوتر - Pure Liveliness - 16 دى ۱۳۹۵ ۰۸:۱۵ ب.ظ
(۱۴ دى ۱۳۹۵ ۰۱:۴۳ ب.ظ)arash691 نوشته شده توسط: دوستان عکس سوال و جواب رو ضمیمه کردم : تو کتاب پوران جوابی که داده اونجایی که تو عکس مشخص کردم و نفهمیدم . یعنی غلط حل نکرده ؟ جوابی که کتاب نوشته درست هست. بیشترین دقت زمانی بدست میاد که دو عددِ متوالی، کوچکترین کوچکترین نما را داشته باشند. ضمناً دو عدد متوالی، با افزودن به مانتیس به دست میاد نه افزودن به نما. کوچکترین عدد به صورت [tex]0.m\: \times2^{0-16}[/tex] هست. عدد بعدی، به آخرین رقم مانتیس یکی اضافه شده. پس به صورت [tex](0.m+2^{-10})\times2^{0-16}[/tex] هست. اختلاف این دو عدد هم [tex]2^{-26}[/tex] است. توجه شود که لزومی ندارد بیتهای عدد هم کوچکترین باشند (یعنی نیازی نیست عدد اول حتما [tex]0.00...0\times2^{0-16}[/tex] و عدد دوم به صورت [tex]0.00...1\times2^{0-16}[/tex] باشد. کافی هست نما، مینیمم باشد چون به هر حال اختلاف دو عدد متوالی از نظر مانتیس، همواره [tex]2^{-10}[/tex] خواهد بود. بدترین دقت هم وقتی هست که نما ماکزیمم هست. [tex](0.m+0.00...1)\times2^{31-16}-(0.m)\times2^{31-16}=(0.m+2^{-10})\times2^{15}-0.m\times2^{15}=2^5[/tex] |
RE: ممیز شناور سال ۸۷ کامپیوتر - arash691 - 16 دى ۱۳۹۵ ۱۱:۰۱ ب.ظ
(۱۶ دى ۱۳۹۵ ۰۸:۱۵ ب.ظ)Pure Liveliness نوشته شده توسط:(14 دى ۱۳۹۵ ۰۱:۴۳ ب.ظ)arash691 نوشته شده توسط: دوستان عکس سوال و جواب رو ضمیمه کردم : تو کتاب پوران جوابی که داده اونجایی که تو عکس مشخص کردم و نفهمیدم . یعنی غلط حل نکرده ؟ ممنون . فقط یه سوال چرا گفتید " نما اگه مینیمم باشه دقت افزایش پیدا میکنه " ؟ یعنی دقت اعداد ممیز شناور با نما مشخص میشه ؟ چیزی که تو پوران گفته مانتیس دقت و نما محدوده اعداد و مشخص میکنه |
RE: ممیز شناور سال ۸۷ کامپیوتر - Behnam - ۱۶ دى ۱۳۹۵ ۱۱:۴۴ ب.ظ
(۱۶ دى ۱۳۹۵ ۱۱:۰۱ ب.ظ)arash691 نوشته شده توسط:(16 دى ۱۳۹۵ ۰۸:۱۵ ب.ظ)Pure Liveliness نوشته شده توسط:(14 دى ۱۳۹۵ ۰۱:۴۳ ب.ظ)arash691 نوشته شده توسط: دوستان عکس سوال و جواب رو ضمیمه کردم : تو کتاب پوران جوابی که داده اونجایی که تو عکس مشخص کردم و نفهمیدم . یعنی غلط حل نکرده ؟ مانتیس هر چی بیشتر باشه خب بله دقت بیشتر میشه. منظور ایشون این بوده که الان که تعداد بیتهای مانتیس ثابت هست (۱۰ بیت)، پس بیشترین دقت وقتی بدست میاد که نما کمترین باشه. و الا هر چی تعداد بیتهای مانتیس بیشتر، دقت بیشتر. |