۱
subtitle
ارسال: #۱
  
تعداد حالات پریش با مکانهای اضافی
میدونیم وقتی n شی با شماره از ۱ تا n داشته باشیم و n مکان باشه و بخواهیم هیچ شیی در مکان با شماره یکسان با خودش قرار نگیره چند جمله ای پریش رو برای تعداد حالات داریم:
[tex] n!(\frac{1}{2!}-\frac{1}{3!} \frac{1}{4!}...-\frac{1}{n!})[/tex]
حالا اگه تعداد ظروفمون بیشتر باشه، مثلا ۱+n یا بیشتر، این تعداد حالات چه تغییری میکنه و چطوری میشه بدست آوردش؟
تشکر
[tex] n!(\frac{1}{2!}-\frac{1}{3!} \frac{1}{4!}...-\frac{1}{n!})[/tex]
حالا اگه تعداد ظروفمون بیشتر باشه، مثلا ۱+n یا بیشتر، این تعداد حالات چه تغییری میکنه و چطوری میشه بدست آوردش؟
تشکر
۱
ارسال: #۲
  
RE: تعداد حالات پریش با مکانهای اضافی
سلام. در حالت کلی رابطه پریش میشه: [tex]\sum_{i=0}^m\frac{(-1)^im!}{i!}[/tex] که به ازای nهای بزرگتر از ۵ به [tex]\frac{m!}{e}[/tex] میل میکنه. حالا میخاد m برابر n یا n+1 باشه.
ارسال: #۳
  
RE: تعداد حالات پریش با مکانهای اضافی
(۲۹ دى ۱۳۹۲ ۰۳:۱۰ ق.ظ)Jooybari نوشته شده توسط: سلام. در حالت کلی رابطه پریش میشه: [tex]\sum_{i=0}^m\frac{(-1)^im!}{i!}[/tex] که به ازای nهای بزرگتر از ۵ به [tex]\frac{m!}{e}[/tex] میل میکنه. حالا میخاد m برابر n یا n+1 باشه.
نه این مد نظرم نبود
میگم اگه ظروف شماره دارمون از اشیا شماره دار بیشتر باشه
مثلا ۵ ظرف با شماره از ۱ تا ۵ و ۴ شی با شماره از ۱ تا ۴ داشته باشیم
حالا تعداد حالات قرارگرفتن این ۴ شی شماره دار در ۵ مکان شماره دار، طوریکه هیچیک در مکان هم شماره با خودش قرار نگیره
اگه ظروف از ۱ تا ۶ باشه چطوری میشه (برای ۴ شی ۱ تا ۴)؟
ارسال: #۴
  
RE: تعداد حالات پریش با مکانهای اضافی
(۲۹ دى ۱۳۹۲ ۰۱:۴۰ ب.ظ)wokesh نوشته شده توسط: نه این مد نظرم نبود
میگم اگه ظروف شماره دارمون از اشیا شماره دار بیشتر باشه
مثلا ۵ ظرف با شماره از ۱ تا ۵ و ۴ شی با شماره از ۱ تا ۴ داشته باشیم
حالا تعداد حالات قرارگرفتن این ۴ شی شماره دار در ۵ مکان شماره دار، طوریکه هیچیک در مکان هم شماره با خودش قرار نگیره
اگه ظروف از ۱ تا ۶ باشه چطوری میشه (برای ۴ شی ۱ تا ۴)؟
به نظرم میشه [tex]\sum_{i=0}^n\frac{(-1)^im!}{i!(m-n)!}[/tex] برای m ظرف و nشئ.
ارسال: #۵
  
RE: تعداد حالات پریش با مکانهای اضافی
(۲۹ دى ۱۳۹۲ ۰۲:۳۳ ب.ظ)Jooybari نوشته شده توسط:(29 دى ۱۳۹۲ ۰۱:۴۰ ب.ظ)wokesh نوشته شده توسط: نه این مد نظرم نبود
میگم اگه ظروف شماره دارمون از اشیا شماره دار بیشتر باشه
مثلا ۵ ظرف با شماره از ۱ تا ۵ و ۴ شی با شماره از ۱ تا ۴ داشته باشیم
حالا تعداد حالات قرارگرفتن این ۴ شی شماره دار در ۵ مکان شماره دار، طوریکه هیچیک در مکان هم شماره با خودش قرار نگیره
اگه ظروف از ۱ تا ۶ باشه چطوری میشه (برای ۴ شی ۱ تا ۴)؟
به نظرم میشه [tex]\sum_{i=0}^n\frac{(-1)^im!}{i!(m-n)!}[/tex] برای m ظرف و nشئ.
خیلی ممنون
ولی وقتی این فرمول رو برای ۵ ظرف و ۴ شی استفاده میکنم جواب ۸ رو میده، در صورتیکه وقتی روی کاغذ این حالات رو یکی یکی بررسی میکنی ۱۱ حالت میشه!
ارسال: #۶
  
RE: تعداد حالات پریش با مکانهای اضافی
فکر کنم توی حذف چندتا جمله عجله کردم:
[tex]\sum_{i=0}^n(-1)^i\frac{(m-i)!n!}{(m-n)!(n-i)!i!}[/tex]
به ازای i=0 حالت کلی بدون درنظرگرفتن پریشه. به ازای i=k یعنی میدونیم حداقل k عنصر سر جای خودشون هستن. برای m=5 و n=4 جواب ۵۳ بدست اومد. تعداد ظروف باید بزرگتر از تعداد اشیا باشه. اگه m=n باشه به همون فرمول پریش میرسیم.
[tex]\sum_{i=0}^n(-1)^i\frac{(m-i)!n!}{(m-n)!(n-i)!i!}[/tex]
به ازای i=0 حالت کلی بدون درنظرگرفتن پریشه. به ازای i=k یعنی میدونیم حداقل k عنصر سر جای خودشون هستن. برای m=5 و n=4 جواب ۵۳ بدست اومد. تعداد ظروف باید بزرگتر از تعداد اشیا باشه. اگه m=n باشه به همون فرمول پریش میرسیم.
ارسال: #۷
  
RE: تعداد حالات پریش با مکانهای اضافی
(۲۹ دى ۱۳۹۲ ۰۵:۰۴ ب.ظ)Jooybari نوشته شده توسط: فکر کنم توی حذف چندتا جمله عجله کردم:
[tex]\sum_{i=0}^n(-1)^i\frac{(m-i)!n!}{(m-n)!(n-i)!i!}[/tex]
به ازای i=0 حالت کلی بدون درنظرگرفتن پریشه. به ازای i=k یعنی میدونیم حداقل k عنصر سر جای خودشون هستن. برای m=5 و n=4 جواب ۵۳ بدست اومد. تعداد ظروف باید بزرگتر از تعداد اشیا باشه. اگه m=n باشه به همون فرمول پریش میرسیم.
واقعا خیلی ممنون
اگه شما رو نداشتیم ما چی میشد؟
حالا یه سوال دیگه که برام پیش اومد اینکه چجوری این فرمول بدست اومد؟
ارسال: #۸
  
RE: تعداد حالات پریش با مکانهای اضافی
(۲۹ دى ۱۳۹۲ ۰۵:۴۵ ب.ظ)wokesh نوشته شده توسط: حالا یه سوال دیگه که برام پیش اومد اینکه چجوری این فرمول بدست اومد؟
[tex]\sum_{i=0}^n(-1)^i\frac{(m-i)!n!}{(m-n)!(n-i)!i!}=[/tex]
[tex]\sum_{i=0}^n(-1)^i\binom{n}{i}\times (m-i)(m-i-1)(m-i-2)...(m-n)[/tex]
رابطه فوق رو داریم. توی حالت کلی چندتا از اشیا سر جای خودشون میتونن قرار بگیرن؟ از صفر تا n تا. این تعداد همون مقدار i خواهد بود. اصل شمول و طرد: کل حالات منهای حالاتی که حداقل یک عضو مشخص سر جای خودش باشه بعلاوه حالاتی که حداقل دو عضو مشخص سر جای خودشون باشن ...
اون [tex](-1)^i[/tex] برای یکی درمیون مثبت و منفیه. اون انتخاب i از n برای مشخص کردن i شی که سر جای خودشوننه. بقیه اشیا هم نمیتونن سر جای اون i شی قرار بگیرن.
ارسال: #۹
  
RE: تعداد حالات پریش با مکانهای اضافی
(۳۰ دى ۱۳۹۲ ۱۲:۵۱ ق.ظ)Jooybari نوشته شده توسط:(29 دى ۱۳۹۲ ۰۵:۴۵ ب.ظ)wokesh نوشته شده توسط: حالا یه سوال دیگه که برام پیش اومد اینکه چجوری این فرمول بدست اومد؟
[tex]\sum_{i=0}^n(-1)^i\frac{(m-i)!n!}{(m-n)!(n-i)!i!}=[/tex]
[tex]\sum_{i=0}^n(-1)^i\binom{n}{i}\times (m-i)(m-i-1)(m-i-2)...(m-n)[/tex]
رابطه فوق رو داریم. توی حالت کلی چندتا از اشیا سر جای خودشون میتونن قرار بگیرن؟ از صفر تا n تا. این تعداد همون مقدار i خواهد بود. اصل شمول و طرد: کل حالات منهای حالاتی که حداقل یک عضو مشخص سر جای خودش باشه بعلاوه حالاتی که حداقل دو عضو مشخص سر جای خودشون باشن ...
اون [tex](-1)^i[/tex] برای یکی درمیون مثبت و منفیه. اون انتخاب i از n برای مشخص کردن i شی که سر جای خودشوننه. بقیه اشیا هم نمیتونن سر جای اون i شی قرار بگیرن.
جناب جویباری مثل اینکه یا من مشکل پیدا کردم یا اینکه فرمول دارای اشکاله!!!
عجیبه اونروز با همین فرمول ۵۳ را بدست آوردم ولی حالا نمیشه!!!
خیلی گیج شدم
میشه یه راهنمایی کنید
ارسال: #۱۰
  
RE: تعداد حالات پریش با مکانهای اضافی
(۰۴ بهمن ۱۳۹۲ ۰۸:۰۱ ب.ظ)wokesh نوشته شده توسط:(30 دى ۱۳۹۲ ۱۲:۵۱ ق.ظ)Jooybari نوشته شده توسط:(29 دى ۱۳۹۲ ۰۵:۴۵ ب.ظ)wokesh نوشته شده توسط: حالا یه سوال دیگه که برام پیش اومد اینکه چجوری این فرمول بدست اومد؟
[tex]\sum_{i=0}^n(-1)^i\frac{(m-i)!n!}{(m-n)!(n-i)!i!}=[/tex]
[tex]\sum_{i=0}^n(-1)^i\binom{n}{i}\times (m-i)(m-i-1)(m-i-2)...(m-n)[/tex]
رابطه فوق رو داریم. توی حالت کلی چندتا از اشیا سر جای خودشون میتونن قرار بگیرن؟ از صفر تا n تا. این تعداد همون مقدار i خواهد بود. اصل شمول و طرد: کل حالات منهای حالاتی که حداقل یک عضو مشخص سر جای خودش باشه بعلاوه حالاتی که حداقل دو عضو مشخص سر جای خودشون باشن ...
اون [tex](-1)^i[/tex] برای یکی درمیون مثبت و منفیه. اون انتخاب i از n برای مشخص کردن i شی که سر جای خودشوننه. بقیه اشیا هم نمیتونن سر جای اون i شی قرار بگیرن.
جناب جویباری مثل اینکه یا من مشکل پیدا کردم یا اینکه فرمول دارای اشکاله!!!
عجیبه اونروز با همین فرمول ۵۳ را بدست آوردم ولی حالا نمیشه!!!
خیلی گیج شدم
میشه یه راهنمایی کنید
من دستی حساب نکردم. کدش رو زدم. جواب ۵۳ بوده.
موضوعهای مرتبط با این موضوع... |
|||||
موضوع: | نویسنده | پاسخ: | بازدید: | آخرین ارسال | |
تعداد برگ درخت؟؟؟؟؟؟؟ | rad.bahar | ۴ | ۴,۸۳۲ |
۱۵ آذر ۱۴۰۲ ۱۱:۵۳ ق.ظ آخرین ارسال: mohamadrra |
|
تعداد جواب | mostafaheydar1370 | ۲۱ | ۱۹,۴۱۴ |
۰۱ مهر ۱۳۹۹ ۱۱:۴۱ ب.ظ آخرین ارسال: miinaa |
|
تعداد روش های نوشتن عدد n | ss311 | ۲ | ۳,۳۷۲ |
۱۳ بهمن ۱۳۹۸ ۰۵:۲۷ ب.ظ آخرین ارسال: ss311 |
|
تعداد مسیرها در گراف | ss311 | ۰ | ۲,۰۳۱ |
۰۸ بهمن ۱۳۹۸ ۱۲:۴۷ ب.ظ آخرین ارسال: ss311 |
|
تعداد درخت فراگیر | ss311 | ۰ | ۲,۳۲۱ |
۰۶ بهمن ۱۳۹۸ ۰۵:۰۶ ب.ظ آخرین ارسال: ss311 |
|
تعداد توابع پوشا | ss311 | ۰ | ۲,۰۹۰ |
۰۶ بهمن ۱۳۹۸ ۰۴:۵۷ ب.ظ آخرین ارسال: ss311 |
|
تعداد اعداد ۵ رقمی هم ارز | ss311 | ۲ | ۲,۶۵۱ |
۰۶ بهمن ۱۳۹۸ ۰۴:۳۹ ب.ظ آخرین ارسال: ss311 |
|
تعداد رشته های n بیتی | hamedsos | ۲ | ۳,۱۴۱ |
۱۸ آبان ۱۳۹۸ ۰۹:۰۶ ب.ظ آخرین ارسال: Jooybari |
|
تعداد درختهای پوشا | ss311 | ۰ | ۱,۷۲۴ |
۱۹ بهمن ۱۳۹۷ ۱۲:۰۸ ب.ظ آخرین ارسال: ss311 |
|
تفاوت تعداد مقایسه های مورد نیاز در الگوریتم های متفاوت | porseshgar | ۰ | ۲,۱۷۱ |
۱۵ بهمن ۱۳۹۷ ۱۲:۳۳ ب.ظ آخرین ارسال: porseshgar |
Can I see some ID?
Feeling left out?
نگران نباش، فقط روی این لینک برای ثبت نام کلیک کن. رمزت رو فراموش کردی؟ اینجا به یادت میاریم! close