۰
subtitle
ارسال: #۱
  
حل سیگما
با سلام خدمت دوستان
با توجه به اینکه واسه بدست اوردن i∑ از تصاعد عددی استفاده میکنیم و حاصل برابر جمع جمله اول و اخر ضربدر تعداد جملات و بعد بخش بر ۲ هست حالا ۲^i∑ و ۳^i∑ رو چطور میتونم با استفاده ازش حل کنم؟؟ (میدونم که هر کدوم تساوی خودشو داره ولی فرمولاشونو از کجا اورده؟؟)
با توجه به اینکه واسه بدست اوردن i∑ از تصاعد عددی استفاده میکنیم و حاصل برابر جمع جمله اول و اخر ضربدر تعداد جملات و بعد بخش بر ۲ هست حالا ۲^i∑ و ۳^i∑ رو چطور میتونم با استفاده ازش حل کنم؟؟ (میدونم که هر کدوم تساوی خودشو داره ولی فرمولاشونو از کجا اورده؟؟)
۰
ارسال: #۲
  
RE: حل سیگما
سلام
برای بدست اوردن فرمول های سری های که شما گفتید میتوان از رابطه ی بازگشتی استفاده کرد مثلا [tex]\sum^n_{i=1}\: i[/tex] دارای رابطه ی بازگشتی [tex]T(n)=T(n-1)+n\: \: \: ,\: \: T(1)=1[/tex] است که دارای معادله مشخصه ی [tex](x-1)^3=0[/tex] پس [tex]T(n)=a+bn+cn^2[/tex] خواهد بود که با جایگذاری مقادیر اولیه وحل معادلات به [tex]T(n)=\frac{1}{2}n+\frac{1}{2}n^2=\frac{n(n+1)}{2}[/tex] می رسیم برای [tex]\sum i^2[/tex] هم رابطه ی بازگشتی [tex]T(n)=T(n-1)+n^2[/tex] داریم که دارای معادله ی مشخصه [tex](x-1)^4=0[/tex] پس [tex]T(n)=a+bn+cn^2+dn^3[/tex] که با جایگذاری مقادیر اولیه وحل معادلات به [tex]T(n)=\frac{1}{6}n+\frac{1}{2}n^2+\frac{1}{3}n^3=\frac{n(n+1)(2n+1)}{6}[/tex] می رسیم به همین ترتیب برای [tex]\sum i^3[/tex] هم رابطه ی بازگشتی [tex]T(n)=T(n-1)+n^3[/tex] داریم و همین طور حل می کنیم... البته روش های دیگری نیز حتما برای بدست اوردن فرمول مجموع وجود دارد.
برای بدست اوردن فرمول های سری های که شما گفتید میتوان از رابطه ی بازگشتی استفاده کرد مثلا [tex]\sum^n_{i=1}\: i[/tex] دارای رابطه ی بازگشتی [tex]T(n)=T(n-1)+n\: \: \: ,\: \: T(1)=1[/tex] است که دارای معادله مشخصه ی [tex](x-1)^3=0[/tex] پس [tex]T(n)=a+bn+cn^2[/tex] خواهد بود که با جایگذاری مقادیر اولیه وحل معادلات به [tex]T(n)=\frac{1}{2}n+\frac{1}{2}n^2=\frac{n(n+1)}{2}[/tex] می رسیم برای [tex]\sum i^2[/tex] هم رابطه ی بازگشتی [tex]T(n)=T(n-1)+n^2[/tex] داریم که دارای معادله ی مشخصه [tex](x-1)^4=0[/tex] پس [tex]T(n)=a+bn+cn^2+dn^3[/tex] که با جایگذاری مقادیر اولیه وحل معادلات به [tex]T(n)=\frac{1}{6}n+\frac{1}{2}n^2+\frac{1}{3}n^3=\frac{n(n+1)(2n+1)}{6}[/tex] می رسیم به همین ترتیب برای [tex]\sum i^3[/tex] هم رابطه ی بازگشتی [tex]T(n)=T(n-1)+n^3[/tex] داریم و همین طور حل می کنیم... البته روش های دیگری نیز حتما برای بدست اوردن فرمول مجموع وجود دارد.
ارسال: #۳
  
RE: حل سیگما
(۰۹ بهمن ۱۳۹۶ ۱۰:۳۵ ب.ظ)msour44 نوشته شده توسط: سلام
برای بدست اوردن فرمول های سری های که شما گفتید میتوان از رابطه ی بازگشتی استفاده کرد مثلا [tex]\sum^n_{i=1}\: i[/tex] دارای رابطه ی بازگشتی [tex]T(n)=T(n-1)+n\: \: \: ,\: \: T(1)=1[/tex] است که دارای معادله مشخصه ی [tex](x-1)^3=0[/tex] پس [tex]T(n)=a+bn+cn^2[/tex] خواهد بود که با جایگذاری مقادیر اولیه وحل معادلات به [tex]T(n)=\frac{1}{2}n+\frac{1}{2}n^2=\frac{n(n+1)}{2}[/tex] می رسیم برای [tex]\sum i^2[/tex] هم رابطه ی بازگشتی [tex]T(n)=T(n-1)+n^2[/tex] داریم که دارای معادله ی مشخصه [tex](x-1)^4=0[/tex] پس [tex]T(n)=a+bn+cn^2+dn^3[/tex] که با جایگذاری مقادیر اولیه وحل معادلات به [tex]T(n)=\frac{1}{6}n+\frac{1}{2}n^2+\frac{1}{3}n^3=\frac{n(n+1)(2n+1)}{6}[/tex] می رسیم به همین ترتیب برای [tex]\sum i^3[/tex] هم رابطه ی بازگشتی [tex]T(n)=T(n-1)+n^3[/tex] داریم و همین طور حل می کنیم... البته روش های دیگری نیز حتما برای بدست اوردن فرمول مجموع وجود دارد.
سپاسگزار از راهنماییتون
Can I see some ID?
Feeling left out?
نگران نباش، فقط روی این لینک برای ثبت نام کلیک کن. رمزت رو فراموش کردی؟ اینجا به یادت میاریم! close