۰
subtitle
ارسال: #۱
  
تعداد درخت دودویی
سلام بچه ها چندتا سوال داشتم ممنون میشم اگه می تونید راهنمایی کنید
چند درخت دودویی متفاوت با n گره و ارتفاع n می توان داشت؟(سطح ریشه ۰ )
چند درخت دودویی متفاوت با n گره و ارتفاع n-1 می توان داشت؟(سطح ۰ ) و (سطح۱)
چه تعداد درخت دودویی محض با n گره میتوان داشت؟
چند درخت دودویی متفاوت با n گره و ارتفاع n می توان داشت؟(سطح ریشه ۰ )
چند درخت دودویی متفاوت با n گره و ارتفاع n-1 می توان داشت؟(سطح ۰ ) و (سطح۱)
چه تعداد درخت دودویی محض با n گره میتوان داشت؟
۱
ارسال: #۲
  
تعداد درخت دودویی
سوال سوم: من برای جند حالت پیش رفتم فکر کنم بشه بنویسیم
T(3)=1 ---->1
T(5)=2---->2
T(7)=5---->3
T(9)=14---->4
...
T(n)=3*T(n-1)-1
شایدم غلط باشه. بچه ها بحث کنن. در ضمن معادله بالا را می تونین توسط معادلات غیر همگن حل کنین و جواب مستقیم براش به دست بیارین.
T(n)-3T(n-1)=1
(r^2-3r)(r-1)=0
T(n)=c1*1^n+c2*3^n
T(n)=0.5*1^n+(1/6)*3^n
T(3)=1 ---->1
T(5)=2---->2
T(7)=5---->3
T(9)=14---->4
...
T(n)=3*T(n-1)-1
شایدم غلط باشه. بچه ها بحث کنن. در ضمن معادله بالا را می تونین توسط معادلات غیر همگن حل کنین و جواب مستقیم براش به دست بیارین.
T(n)-3T(n-1)=1
(r^2-3r)(r-1)=0
T(n)=c1*1^n+c2*3^n
T(n)=0.5*1^n+(1/6)*3^n
۰
ارسال: #۳
  
RE: تعداد درخت دودویی
بچه ها فکر کنم ۲تا سوال اول رو فهمیدم جوابش اینجوری میشه؟اگه اشتباه نوشتم میشه راهنمایی کنید؟
اولی میشه ۲ به توان n-1
دومی هم واسه سطح ریشه ۰ میشه مثل اولی ، اما واسه سطح ریشه ۱ میشه ۲n-5*2^n-3
اما سومی رو میدونم که برای n>=3 ،واسه n=3 میشه ۱درخت واسه n=5 میشه ۲درخت... ،اما فرمولش نمی دونم چی میشه کسی میدونه؟
اولی میشه ۲ به توان n-1
دومی هم واسه سطح ریشه ۰ میشه مثل اولی ، اما واسه سطح ریشه ۱ میشه ۲n-5*2^n-3
اما سومی رو میدونم که برای n>=3 ،واسه n=3 میشه ۱درخت واسه n=5 میشه ۲درخت... ،اما فرمولش نمی دونم چی میشه کسی میدونه؟
۰
ارسال: #۴
  
RE: تعداد درخت دودویی
ممنون از جوابتون اما اگه فرمولتون درست باشه فکر کنم باید اینجوری باشه
T(n)=3*T(n-2)-1
آخه فقط واسه تعداد گره های فرد درخت، دودویی محض میشه درسته؟ اونجوری n-1 شامل تعداد گره های زوج هم میشه اما با گره زوج، درختمون دودویی محض نمیشه..
T(n)=3*T(n-2)-1
آخه فقط واسه تعداد گره های فرد درخت، دودویی محض میشه درسته؟ اونجوری n-1 شامل تعداد گره های زوج هم میشه اما با گره زوج، درختمون دودویی محض نمیشه..
۰
ارسال: #۵
  
تعداد درخت دودویی
اگه دقت کنین من این طوری نوشتم
T(3)=1 ---->1
T(5)=2---->2
یعنی جمله اول (۳)Tو دوم(۵)T. به عبارتی
T(1)=1
T(2)=2
من با شماره ها کار کردم یعنی ۱و۲/ حرف شما هم درسته می تونین اون شکلی هم در نظر بگیرین هیچ تفاوتی نمی کنه فقط یه تغییر متغیره
T(3)=1 ---->1
T(5)=2---->2
یعنی جمله اول (۳)Tو دوم(۵)T. به عبارتی
T(1)=1
T(2)=2
من با شماره ها کار کردم یعنی ۱و۲/ حرف شما هم درسته می تونین اون شکلی هم در نظر بگیرین هیچ تفاوتی نمی کنه فقط یه تغییر متغیره
۰
موضوعهای مرتبط با این موضوع... |
|||||
موضوع: | نویسنده | پاسخ: | بازدید: | آخرین ارسال | |
تعداد برگ درخت؟؟؟؟؟؟؟ | rad.bahar | ۴ | ۴,۹۷۲ |
۱۵ آذر ۱۴۰۲ ۱۱:۵۳ ق.ظ آخرین ارسال: mohamadrra |
|
دو سوال در مورد درخت BST(درخت جستجوی دودویی) | امیدوار | ۳ | ۵,۶۷۱ |
۱۰ دى ۱۳۹۹ ۱۲:۰۴ ق.ظ آخرین ارسال: marzi.pnh |
|
زمان جستجوی درخت | fateme.sm | ۰ | ۱,۸۰۲ |
۰۶ دى ۱۳۹۹ ۱۰:۴۱ ب.ظ آخرین ارسال: fateme.sm |
|
مرتبه ایجاد درخت | rad.bahar | ۱ | ۳,۴۲۷ |
۳۰ مهر ۱۳۹۹ ۰۳:۳۴ ب.ظ آخرین ارسال: rad.bahar |
|
عمق درخت ???? | rad.bahar | ۱ | ۲,۴۵۰ |
۱۱ مهر ۱۳۹۹ ۰۳:۳۱ ب.ظ آخرین ارسال: عزیز دادخواه |
|
تعداد جواب | mostafaheydar1370 | ۲۱ | ۱۹,۷۳۸ |
۰۱ مهر ۱۳۹۹ ۱۱:۴۱ ب.ظ آخرین ارسال: miinaa |
|
محاسبه ارتفاع درخت.... | baharkhanoom | ۳ | ۸,۱۸۴ |
۰۹ اردیبهشت ۱۳۹۹ ۰۶:۴۸ ب.ظ آخرین ارسال: mohsentafresh |
|
تعداد روش های نوشتن عدد n | ss311 | ۲ | ۳,۴۲۸ |
۱۳ بهمن ۱۳۹۸ ۰۵:۲۷ ب.ظ آخرین ارسال: ss311 |
|
تعداد مسیرها در گراف | ss311 | ۰ | ۲,۰۶۰ |
۰۸ بهمن ۱۳۹۸ ۱۲:۴۷ ب.ظ آخرین ارسال: ss311 |
|
تعداد درخت فراگیر | ss311 | ۰ | ۲,۳۵۵ |
۰۶ بهمن ۱۳۹۸ ۰۵:۰۶ ب.ظ آخرین ارسال: ss311 |
Can I see some ID?
Feeling left out?
نگران نباش، فقط روی این لینک برای ثبت نام کلیک کن. رمزت رو فراموش کردی؟ اینجا به یادت میاریم! close