تالار گفتمان مانشت
تعداد جواب - نسخه‌ی قابل چاپ

صفحه‌ها: ۱ ۲
تعداد جواب - mostafaheydar1370 - 02 اسفند ۱۳۹۵ ۰۴:۳۰ ق.ظ

سلام تعداد جواب مسئله ی زیر باشرایط زیر (اگر ۳=<n)باشد چقدر است ؟ممنون
x+y+z= n(برای مثال فرض کنید n=100)
شرایط مسئله:
(x,y,z)=عدد طبیعی
------------
x+y>z
x+z>y
y+z>x
----------------
x>0
y>0
z>0

RE: تعداد جواب - Jooybari - 03 اسفند ۱۳۹۵ ۱۱:۲۴ ق.ظ

سلام. لطفاً سوال رو اصلاح کنید.

RE: تعداد جواب - mostafaheydar1370 - 04 اسفند ۱۳۹۵ ۱۲:۵۵ ق.ظ

(۰۳ اسفند ۱۳۹۵ ۱۱:۲۴ ق.ظ)Jooybari نوشته شده توسط:  سلام. لطفاً سوال رو اصلاح کنید.
سلام اصلاح شد

RE: تعداد جواب - Jooybari - 04 اسفند ۱۳۹۵ ۰۴:۱۵ ق.ظ

سلام. شرایط مساله وقتی برقراره که مقدار بیشینه هر سه عدد برابر ۴۹ باشه. چون اگه یکی از اعداد بزرگترمساوی ۵۰ باشه، رابطه برقرار نیست. حداکثر هم یکی از این ۳ عدد برگترمساوی ۵۰ میشه. تعداد کل حالاتی که اعداد x,y,z اعداد طبیعی باشن و مجموعشون برابر ۱۰۰ بشه برابره با [tex]\binom{100-3+2}{2}=\binom{99}{2}[/tex]. تعداد حالات غیر مجاز (یکی از ۳ عدد مقدار بیشتر از ۴۹ بگیره) برابره با [tex]\binom{3}{1}\binom{100-50-2+2}{2}=3\binom{50}{2}[/tex]. جواب میشه مقدار اول منهای مقدار دوم. یعنی:

[tex]\binom{99}{2}-3\binom{50}{2}=49(99-3\times25)=49\times24=\binom{49}{2}[/tex]

RE: تعداد جواب - mostafaheydar1370 - 04 اسفند ۱۳۹۵ ۰۴:۲۸ ق.ظ

(۰۴ اسفند ۱۳۹۵ ۰۴:۱۵ ق.ظ)Jooybari نوشته شده توسط:  سلام. شرایط مساله وقتی برقراره که مقدار بیشینه هر سه عدد برابر ۴۹ باشه. چون اگه یکی از اعداد بزرگترمساوی ۵۰ باشه، رابطه برقرار نیست. حداکثر هم یکی از این ۳ عدد برگترمساوی ۵۰ میشه. تعداد کل حالاتی که اعداد x,y,z اعداد طبیعی باشن و مجموعشون برابر ۱۰۰ بشه برابره با [tex]\binom{100-3+2}{2}=\binom{99}{2}[/tex]. تعداد حالات غیر مجاز (یکی از ۳ عدد مقدار بیشتر از ۴۹ بگیره) برابره با [tex]\binom{3}{1}\binom{100-50-2+2}{2}=3\binom{50}{2}[/tex]. جواب میشه مقدار اول منهای مقدار دوم. یعنی:

[tex]\binom{99}{2}-3\binom{50}{2}=49(99-3\times25)=49\times24=\binom{49}{2}[/tex]

یعنی میتونیم عدد x رو از ۱ تا ۴۹ انتخاب کنیم. عدد y رو هم باید از ۱ تا ۴۹ انتخاب کنیم. عدد z میشه [tex]100-x-y[/tex].
سلام خیلی ممنون بابت جواب میشه در حالت کلی برای n جواب رو بفرمائید

RE: تعداد جواب - Jooybari - 04 اسفند ۱۳۹۵ ۱۰:۳۸ ق.ظ

(۰۴ اسفند ۱۳۹۵ ۰۴:۲۸ ق.ظ)mostafaheydar1370 نوشته شده توسط:  
(04 اسفند ۱۳۹۵ ۰۴:۱۵ ق.ظ)Jooybari نوشته شده توسط:  سلام. شرایط مساله وقتی برقراره که مقدار بیشینه هر سه عدد برابر ۴۹ باشه. چون اگه یکی از اعداد بزرگترمساوی ۵۰ باشه، رابطه برقرار نیست. حداکثر هم یکی از این ۳ عدد برگترمساوی ۵۰ میشه. تعداد کل حالاتی که اعداد x,y,z اعداد طبیعی باشن و مجموعشون برابر ۱۰۰ بشه برابره با [tex]\binom{100-3+2}{2}=\binom{99}{2}[/tex]. تعداد حالات غیر مجاز (یکی از ۳ عدد مقدار بیشتر از ۴۹ بگیره) برابره با [tex]\binom{3}{1}\binom{100-50-2+2}{2}=3\binom{50}{2}[/tex]. جواب میشه مقدار اول منهای مقدار دوم. یعنی:

[tex]\binom{99}{2}-3\binom{50}{2}=49(99-3\times25)=49\times24=\binom{49}{2}[/tex]

یعنی میتونیم عدد x رو از ۱ تا ۴۹ انتخاب کنیم. عدد y رو هم باید از ۱ تا ۴۹ انتخاب کنیم. عدد z میشه [tex]100-x-y[/tex].
سلام خیلی ممنون بابت جواب میشه در حالت کلی برای n جواب رو بفرمائید

به نظرم میشه [tex]\binom{\lfloor\frac{n-1}{2}\rfloor}{2}[/tex].

RE: تعداد جواب - Behnam‌ - ۰۴ اسفند ۱۳۹۵ ۱۱:۲۱ ق.ظ

(۰۴ اسفند ۱۳۹۵ ۰۴:۱۵ ق.ظ)Jooybari نوشته شده توسط:  سلام. شرایط مساله وقتی برقراره که مقدار بیشینه هر سه عدد برابر ۴۹ باشه. چون اگه یکی از اعداد بزرگترمساوی ۵۰ باشه، رابطه برقرار نیست. حداکثر هم یکی از این ۳ عدد برگترمساوی ۵۰ میشه. تعداد کل حالاتی که اعداد x,y,z اعداد طبیعی باشن و مجموعشون برابر ۱۰۰ بشه برابره با [tex]\binom{100-3+2}{2}=\binom{99}{2}[/tex]. تعداد حالات غیر مجاز (یکی از ۳ عدد مقدار بیشتر از ۴۹ بگیره) برابره با [tex]\binom{3}{1}\binom{100-50-2+2}{2}=3\binom{50}{2}[/tex]. جواب میشه مقدار اول منهای مقدار دوم. یعنی:

[tex]\binom{99}{2}-3\binom{50}{2}=49(99-3\times25)=49\times24=\binom{49}{2}[/tex]

یعنی میتونیم عدد x رو از ۱ تا ۴۹ انتخاب کنیم. عدد y رو هم باید از ۱ تا ۴۹ انتخاب کنیم. عدد z میشه [tex]100-x-y[/tex].

به نظرم درست نباشه چون اگه x و y رو ۲۰ بگیریم، z میشه ۶۰ که شرط‌ها (مثلث بودن) نقض میشه

RE: تعداد جواب - Jooybari - 04 اسفند ۱۳۹۵ ۱۲:۰۵ ب.ظ

(۰۴ اسفند ۱۳۹۵ ۱۱:۲۱ ق.ظ)Behnam‌ نوشته شده توسط:  
(04 اسفند ۱۳۹۵ ۰۴:۱۵ ق.ظ)Jooybari نوشته شده توسط:  سلام. شرایط مساله وقتی برقراره که مقدار بیشینه هر سه عدد برابر ۴۹ باشه. چون اگه یکی از اعداد بزرگترمساوی ۵۰ باشه، رابطه برقرار نیست. حداکثر هم یکی از این ۳ عدد برگترمساوی ۵۰ میشه. تعداد کل حالاتی که اعداد x,y,z اعداد طبیعی باشن و مجموعشون برابر ۱۰۰ بشه برابره با [tex]\binom{100-3+2}{2}=\binom{99}{2}[/tex]. تعداد حالات غیر مجاز (یکی از ۳ عدد مقدار بیشتر از ۴۹ بگیره) برابره با [tex]\binom{3}{1}\binom{100-50-2+2}{2}=3\binom{50}{2}[/tex]. جواب میشه مقدار اول منهای مقدار دوم. یعنی:

[tex]\binom{99}{2}-3\binom{50}{2}=49(99-3\times25)=49\times24=\binom{49}{2}[/tex]

یعنی میتونیم عدد x رو از ۱ تا ۴۹ انتخاب کنیم. عدد y رو هم باید از ۱ تا ۴۹ انتخاب کنیم. عدد z میشه [tex]100-x-y[/tex].

به نظرم درست نباشه چون اگه x و y رو ۲۰ بگیریم، z میشه ۶۰ که شرط‌ها (مثلث بودن) نقض میشه

بله مشکل داره. خط آخر رو حذف کردم. توجیهم اشتباه بود. متشکر.

RE: تعداد جواب - msour44 - 04 اسفند ۱۳۹۵ ۰۵:۰۲ ب.ظ

(۰۴ اسفند ۱۳۹۵ ۱۰:۳۸ ق.ظ)Jooybari نوشته شده توسط:  
(04 اسفند ۱۳۹۵ ۰۴:۲۸ ق.ظ)mostafaheydar1370 نوشته شده توسط:  
(04 اسفند ۱۳۹۵ ۰۴:۱۵ ق.ظ)Jooybari نوشته شده توسط:  سلام. شرایط مساله وقتی برقراره که مقدار بیشینه هر سه عدد برابر ۴۹ باشه. چون اگه یکی از اعداد بزرگترمساوی ۵۰ باشه، رابطه برقرار نیست. حداکثر هم یکی از این ۳ عدد برگترمساوی ۵۰ میشه. تعداد کل حالاتی که اعداد x,y,z اعداد طبیعی باشن و مجموعشون برابر ۱۰۰ بشه برابره با [tex]\binom{100-3+2}{2}=\binom{99}{2}[/tex]. تعداد حالات غیر مجاز (یکی از ۳ عدد مقدار بیشتر از ۴۹ بگیره) برابره با [tex]\binom{3}{1}\binom{100-50-2+2}{2}=3\binom{50}{2}[/tex]. جواب میشه مقدار اول منهای مقدار دوم. یعنی:

[tex]\binom{99}{2}-3\binom{50}{2}=49(99-3\times25)=49\times24=\binom{49}{2}[/tex]

یعنی میتونیم عدد x رو از ۱ تا ۴۹ انتخاب کنیم. عدد y رو هم باید از ۱ تا ۴۹ انتخاب کنیم. عدد z میشه [tex]100-x-y[/tex].
سلام خیلی ممنون بابت جواب میشه در حالت کلی برای n جواب رو بفرمائید

به نظرم میشه [tex]\binom{\lfloor\frac{n-1}{2}\rfloor}{2}[/tex].

فک کنم جواب حالت کلی [tex]\binom{\lfloor\frac{n-1}{2}\rfloor}{2}[/tex]. درست نباشه مثلا برای n=5 سه جواب ۱,۲,۲ و۲,۱,۲ و۲,۲,۱ رو داریم ولی این فرمول به ازای ۵ حاصل یک دارد.
اگه به طرفین شرط x+y>z مقدار z را اضافه کنیم داریم x+y+z > 2z واز این داریم [tex]z<\frac{n}{2}[/tex] با همین روش برای دو شرط دیگر داریم [tex]y<\frac{n}{2}[/tex] و [tex]x<\frac{n}{2}[/tex] و اگر شروط حد پایین رو لحاظ کنیم داریم [tex]0<x<\frac{n}{2}[/tex] , همین طور برای y , z . حال کافی است به هریک از x ,y ,z یک واحد بدیم تا بزرگتر ازصفر شوند و مسئله به x+y+z=n-3 با شروط [tex]x<\frac{n}{2\: }-1\: \: ,\: \: y<\frac{n}{2}-1\: ,\: z<\frac{n}{2}-1[/tex] تبدیل می شود توجه شود که چون به هریک قبلا یک واحد دادیم پس از مقدار حداکثر در مسئله تبدیل شده کم می شود .از اینجا به بعد همون تعداد راه های توزیع n-3 شی یکسان در ۳ جعبه با شروط حداکثری داریم پس از عدم شمول استفاده می کنیم برای سادگی اگر n را زوج بگیریم داریم.
A: شرط [tex]x\ge\frac{n}{2}-1[/tex]
B: شرط [tex]y\ge\frac{n}{2}-1[/tex]
C:شرط [tex]z\ge\frac{n}{2}-1[/tex]
[tex]|A'.B'.C'|=|s|-|A|-|B|-|C|+|A.B|+|A.C|+|B.C|-|A.B.C|=\binom{n-1}{2}-3\binom{\frac{n}{2}}{2}[/tex]
s حالت کلی است و برای محاسبه |A| کافی به A مقدار n/2 -1 را بدیم پس از n باید همین مقدار کم بشه یعنی n/2 -2 باقی می ماند.
برای B و C هم همین طور و حالت های دو تایی و سه تایی هم مقدار صفردارند.
برای حالت فرد فک کنم اگه از n/2 در ترکیب دوم جز صحیح بگیرم جواب درست بدست بیاد یعنی همون جواب کلی برای هر n .بررسی اش با شما.

RE: تعداد جواب - mostafaheydar1370 - 04 اسفند ۱۳۹۵ ۰۵:۳۹ ب.ظ

خیلی ممنون از دوستان بابت ارسال پاسخ ولی متاسفانه جواب ها درست نیست
در اصل صورت سوال این است که چند مثلث متمایز با محیط n داریم (مثلث متمایز یعنی در دو مثلث حداقل یک ضلع نامساوی داشته باشند داشته باشیم )هست به همین جهت مثلا برای n=5که مثال زده شد همه ی گزینه های ۱,۲,۲و۲,۱,۲و۲,۲,۱ یک پاسخ هستند که باید یک بار شمرده شوند حال اگه دوستان لطف کنند و جواب صورت سوال جدید رو بدن ممنون میشویم

RE: تعداد جواب - Jooybari - 04 اسفند ۱۳۹۵ ۰۶:۲۷ ب.ظ

(۰۴ اسفند ۱۳۹۵ ۰۵:۳۹ ب.ظ)mostafaheydar1370 نوشته شده توسط:  خیلی ممنون از دوستان بابت ارسال پاسخ ولی متاسفانه جواب ها درست نیست
در اصل صورت سوال این است که چند مثلث متمایز با محیط n داریم (مثلث متمایز یعنی در دو مثلث حداقل یک ضلع نامساوی داشته باشند داشته باشیم )هست به همین جهت مثلا برای n=5که مثال زده شد همه ی گزینه های ۱,۲,۲و۲,۱,۲و۲,۲,۱ یک پاسخ هستند که باید یک بار شمرده شوند حال اگه دوستان لطف کنند و جواب صورت سوال جدید رو بدن ممنون میشویم

پیشنهاد میدم مبحث افرازهای اعداد صحیح رو بخونید. مربوط به تعداد راه های قرار دادن اشیای مشابه در ظروف مشابه میشه.

RE: تعداد جواب - msour44 - 04 اسفند ۱۳۹۵ ۱۱:۴۵ ب.ظ

(۰۴ اسفند ۱۳۹۵ ۱۱:۰۰ ب.ظ)chokolat نوشته شده توسط:  سلام
سلام
ببخشید این جواب سوال اوله یا دوم؟ چون ایشون دوتا سوال مطرح کردن.
وبرای مثال n=11 که مثلا به ازای x=1 مقادیری که y می گیره ۲و۳و۴و۵ به ازای y =2 پس z یاید ۸ باشه اون وقت شرط x+y>z در سوال اول و اگه جواب سوال دوم باشه شرط x+y>=z را نقض نمی کنه؟ ممنون میشم توضیح بفرمایید.

RE: تعداد جواب - mostafaheydar1370 - 05 اسفند ۱۳۹۵ ۰۴:۰۲ ق.ظ

ممنون از همه دوستان که زحمت کشیدند جواب دادند

RE: تعداد جواب - shahraz - 05 اسفند ۱۳۹۵ ۰۴:۰۴ ق.ظ

(۰۲ اسفند ۱۳۹۵ ۰۴:۳۰ ق.ظ)mostafaheydar1370 نوشته شده توسط:  سلام تعداد جواب مسئله ی زیر باشرایط زیر (اگر ۳=<n)باشد چقدر است ؟ممنون
x+y+z= n(برای مثال فرض کنید n=100)
شرایط مسئله:
(x,y,z)=عدد طبیعی
------------
x+y>z
x+z>y
y+z>x
----------------
x>0
y>0
z>0
..............................................
در اصل صورت سوال این است که چند مثلث متمایز با محیط n داریم (مثلث متمایز یعنی در دو مثلث حداقل یک ضلع نامساوی داشته باشند داشته باشیم )هست به همین جهت مثلا برای n=5که مثال زده شد همه ی گزینه های ۱,۲,۲و۲,۱,۲و۲,۲,۱ یک پاسخ هستند که باید یک بار شمرده شوند

سلام

[attachment=21325]

RE: تعداد جواب - mostafaheydar1370 - 05 اسفند ۱۳۹۵ ۰۳:۳۵ ب.ظ

(۰۵ اسفند ۱۳۹۵ ۰۴:۰۴ ق.ظ)chokolat نوشته شده توسط:  سلام
خیلی ممنون بابت پاسخ ولی جوابی که دادین اشتباه است تو لینک زیر برای طول های زوج جواب داده ولی برای فرد نه

مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.