|
توجه صفحه پنجم کتاب طراحی الگوریتم پوران چاپ ۱۰ - نسخهی قابل چاپ
|
توجه صفحه پنجم کتاب طراحی الگوریتم پوران چاپ ۱۰ - Innocence - 26 آذر ۱۳۹۵ ۱۲:۵۳ ق.ظ
سلام ممنون میشم یه نفر برای من توجه صفحه پنج کتاب الگوریتم پوران چاپ دهم رو توضیح بده
چرا استفاده از اون تکنیکی که توی مثال قبل مطرح شده واسه سری همسازه نادرسته و مقدار r درستی نمیشه پیدا کرد
|
RE: توجه صفحه پنجم کتاب طراحی الگوریتم پوران چاپ ۱۰ - Pure Liveliness - 26 آذر ۱۳۹۵ ۰۱:۱۸ ق.ظ
سلام.
همه که کتاب رو ندارن. عکسش رو بذارید لطفا.
|
RE: توجه صفحه پنجم کتاب طراحی الگوریتم پوران چاپ ۱۰ - Innocence - 26 آذر ۱۳۹۵ ۰۸:۵۲ ق.ظ
(۲۶ آذر ۱۳۹۵ ۰۱:۱۸ ق.ظ)Pure Liveliness نوشته شده توسط: سلام.
همه که کتاب رو ندارن. عکسش رو بذارید لطفا.
|
RE: توجه صفحه پنجم کتاب طراحی الگوریتم پوران چاپ ۱۰ - Pure Liveliness - 26 آذر ۱۳۹۵ ۰۹:۱۶ ب.ظ
[tex]\sum^{\infty}_{k=1}\frac{1}{k}\: =\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...[/tex]
همیشه [tex]\frac{a_{k+1}}{a_k}=\frac{(\frac{1}{k+1})}{(\frac{1}{k})}=\frac{k}{k+1}\: <\: 1[/tex] برقرار هست اما باید یه r ای پیدا کنیم که به ازای هر دو جمله ی پشت هم رابطه ی رو به رو برقرا باشه: [tex]\frac{a_{n+1}}{a_n}[/tex]
در حالی که واسه چند تا جمله بررسی میکنیم این نسبت رو :
[tex]\frac{a_2}{a1}=\frac{1}{2}[/tex]
[tex]\frac{a_3}{a2}=\frac{2}{3}[/tex]
[tex]\frac{a_4}{a3}=\frac{3}{4}[/tex]
.
.
[tex]\frac{a100}{a99}=\frac{99}{100}[/tex]
.
همونطور که میبینیم این نسبت به یک همگرا هست. پس چه مقداری بین ۰ و یک واسه r پیدا کنیم که واسه تمام نسبت ها برقرار باشه؟ خب نمیشه هیچ r ای پیدا کرد. پس نمیتونیم از اون تکنیک استفاده کنیم.
|
RE: توجه صفحه پنجم کتاب طراحی الگوریتم پوران چاپ ۱۰ - Innocence - 27 آذر ۱۳۹۵ ۱۰:۳۴ ب.ظ
(۲۶ آذر ۱۳۹۵ ۰۹:۱۶ ب.ظ)Pure Liveliness نوشته شده توسط: [tex]\sum^{\infty}_{k=1}\frac{1}{k}\: =\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...[/tex]
همیشه [tex]\frac{a_{k+1}}{a_k}=\frac{(\frac{1}{k+1})}{(\frac{1}{k})}=\frac{k}{k+1}\: <\: 1[/tex] برقرار هست اما باید یه r ای پیدا کنیم که به ازای هر دو جمله ی پشت هم رابطه ی رو به رو برقرا باشه: [tex]\frac{a_{n+1}}{a_n}[/tex]
در حالی که واسه چند تا جمله بررسی میکنیم این نسبت رو :
[tex]\frac{a_2}{a1}=\frac{1}{2}[/tex]
[tex]\frac{a_3}{a2}=\frac{2}{3}[/tex]
[tex]\frac{a_4}{a3}=\frac{3}{4}[/tex]
.
.
[tex]\frac{a100}{a99}=\frac{99}{100}[/tex]
.
همونطور که میبینیم این نسبت به یک همگرا هست. پس چه مقداری بین ۰ و یک واسه r پیدا کنیم که واسه تمام نسبت ها برقرار باشه؟ خب نمیشه هیچ r ای پیدا کرد. پس نمیتونیم از اون تکنیک استفاده کنیم.
اما وقتی میخوایم از اون تکنیک استفاده کنیم سیگما از صفر شروع میشه بعد حاصل اون عبارتی ک میگین همیشه برقراره یه چیز دیگه میشه
|
RE: توجه صفحه پنجم کتاب طراحی الگوریتم پوران چاپ ۱۰ - Pure Liveliness - 27 آذر ۱۳۹۵ ۱۱:۱۰ ب.ظ
(۲۷ آذر ۱۳۹۵ ۱۰:۳۴ ب.ظ)Marzie_1371 نوشته شده توسط: (26 آذر ۱۳۹۵ ۰۹:۱۶ ب.ظ)Pure Liveliness نوشته شده توسط: [tex]\sum^{\infty}_{k=1}\frac{1}{k}\: =\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...[/tex]
همیشه [tex]\frac{a_{k+1}}{a_k}=\frac{(\frac{1}{k+1})}{(\frac{1}{k})}=\frac{k}{k+1}\: <\: 1[/tex] برقرار هست اما باید یه r ای پیدا کنیم که به ازای هر دو جمله ی پشت هم رابطه ی رو به رو برقرا باشه: [tex]\frac{a_{n+1}}{a_n}[/tex]
در حالی که واسه چند تا جمله بررسی میکنیم این نسبت رو :
[tex]\frac{a_2}{a1}=\frac{1}{2}[/tex]
[tex]\frac{a_3}{a2}=\frac{2}{3}[/tex]
[tex]\frac{a_4}{a3}=\frac{3}{4}[/tex]
.
.
[tex]\frac{a100}{a99}=\frac{99}{100}[/tex]
.
همونطور که میبینیم این نسبت به یک همگرا هست. پس چه مقداری بین ۰ و یک واسه r پیدا کنیم که واسه تمام نسبت ها برقرار باشه؟ خب نمیشه هیچ r ای پیدا کرد. پس نمیتونیم از اون تکنیک استفاده کنیم.
اما وقتی میخوایم از اون تکنیک استفاده کنیم سیگما از صفر شروع میشه بعد حاصل اون عبارتی ک میگین همیشه برقراره یه چیز دیگه میشه
اگه به جای k صفر بذاریم که میشه ۱ به روی ۰ و نمیشه. کوچکترین عدد باید ۱ باشه.
از طرفی فرقی نداشت از کجا برای اون فرمول شروع کنیم. مهم اینه که هیچ r ای وجود نداره که اون رابطه درست باشه.
|
RE: توجه صفحه پنجم کتاب طراحی الگوریتم پوران چاپ ۱۰ - Innocence - 28 آذر ۱۳۹۵ ۰۶:۳۱ ب.ظ
(۲۷ آذر ۱۳۹۵ ۱۱:۱۰ ب.ظ)Pure Liveliness نوشته شده توسط: (27 آذر ۱۳۹۵ ۱۰:۳۴ ب.ظ)Marzie_1371 نوشته شده توسط: (26 آذر ۱۳۹۵ ۰۹:۱۶ ب.ظ)Pure Liveliness نوشته شده توسط: [tex]\sum^{\infty}_{k=1}\frac{1}{k}\: =\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...[/tex]
همیشه [tex]\frac{a_{k+1}}{a_k}=\frac{(\frac{1}{k+1})}{(\frac{1}{k})}=\frac{k}{k+1}\: <\: 1[/tex] برقرار هست اما باید یه r ای پیدا کنیم که به ازای هر دو جمله ی پشت هم رابطه ی رو به رو برقرا باشه: [tex]\frac{a_{n+1}}{a_n}[/tex]
در حالی که واسه چند تا جمله بررسی میکنیم این نسبت رو :
[tex]\frac{a_2}{a1}=\frac{1}{2}[/tex]
[tex]\frac{a_3}{a2}=\frac{2}{3}[/tex]
[tex]\frac{a_4}{a3}=\frac{3}{4}[/tex]
.
.
[tex]\frac{a100}{a99}=\frac{99}{100}[/tex]
.
همونطور که میبینیم این نسبت به یک همگرا هست. پس چه مقداری بین ۰ و یک واسه r پیدا کنیم که واسه تمام نسبت ها برقرار باشه؟ خب نمیشه هیچ r ای پیدا کرد. پس نمیتونیم از اون تکنیک استفاده کنیم.
اما وقتی میخوایم از اون تکنیک استفاده کنیم سیگما از صفر شروع میشه بعد حاصل اون عبارتی ک میگین همیشه برقراره یه چیز دیگه میشه
اگه به جای k صفر بذاریم که میشه ۱ به روی ۰ و نمیشه. کوچکترین عدد باید ۱ باشه.
از طرفی فرقی نداشت از کجا برای اون فرمول شروع کنیم. مهم اینه که هیچ r ای وجود نداره که اون رابطه درست باشه.
متاسفانه متوجه نشدم توضیحی که دادین رو
|
RE: توجه صفحه پنجم کتاب طراحی الگوریتم پوران چاپ ۱۰ - Pure Liveliness - 28 آذر ۱۳۹۵ ۰۸:۱۱ ب.ظ
(۲۸ آذر ۱۳۹۵ ۰۶:۳۱ ب.ظ)Marzie_1371 نوشته شده توسط: (27 آذر ۱۳۹۵ ۱۱:۱۰ ب.ظ)Pure Liveliness نوشته شده توسط: (27 آذر ۱۳۹۵ ۱۰:۳۴ ب.ظ)Marzie_1371 نوشته شده توسط: (26 آذر ۱۳۹۵ ۰۹:۱۶ ب.ظ)Pure Liveliness نوشته شده توسط: [tex]\sum^{\infty}_{k=1}\frac{1}{k}\: =\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...[/tex]
همیشه [tex]\frac{a_{k+1}}{a_k}=\frac{(\frac{1}{k+1})}{(\frac{1}{k})}=\frac{k}{k+1}\: <\: 1[/tex] برقرار هست اما باید یه r ای پیدا کنیم که به ازای هر دو جمله ی پشت هم رابطه ی رو به رو برقرا باشه: [tex]\frac{a_{n+1}}{a_n}[/tex]
در حالی که واسه چند تا جمله بررسی میکنیم این نسبت رو :
[tex]\frac{a_2}{a1}=\frac{1}{2}[/tex]
[tex]\frac{a_3}{a2}=\frac{2}{3}[/tex]
[tex]\frac{a_4}{a3}=\frac{3}{4}[/tex]
.
.
[tex]\frac{a100}{a99}=\frac{99}{100}[/tex]
.
همونطور که میبینیم این نسبت به یک همگرا هست. پس چه مقداری بین ۰ و یک واسه r پیدا کنیم که واسه تمام نسبت ها برقرار باشه؟ خب نمیشه هیچ r ای پیدا کرد. پس نمیتونیم از اون تکنیک استفاده کنیم.
اما وقتی میخوایم از اون تکنیک استفاده کنیم سیگما از صفر شروع میشه بعد حاصل اون عبارتی ک میگین همیشه برقراره یه چیز دیگه میشه
اگه به جای k صفر بذاریم که میشه ۱ به روی ۰ و نمیشه. کوچکترین عدد باید ۱ باشه.
از طرفی فرقی نداشت از کجا برای اون فرمول شروع کنیم. مهم اینه که هیچ r ای وجود نداره که اون رابطه درست باشه.
متاسفانه متوجه نشدم توضیحی که دادین رو
شما میگید چرا k رو از صفر نمیذاریم؟
خب چون سری تلسکوپی که تووش k توی مخرج هست کوچیکترین مقدار k واسه ش نمیتونه ۰ باشه. چون میره توی مخرج. حلی که خودتون فک میکنید درست هست رو بذارید.
|
RE: توجه صفحه پنجم کتاب طراحی الگوریتم پوران چاپ ۱۰ - Innocence - 02 دى ۱۳۹۵ ۰۱:۳۵ ب.ظ
(۲۸ آذر ۱۳۹۵ ۰۸:۱۱ ب.ظ)Pure Liveliness نوشته شده توسط: (28 آذر ۱۳۹۵ ۰۶:۳۱ ب.ظ)Marzie_1371 نوشته شده توسط: (27 آذر ۱۳۹۵ ۱۱:۱۰ ب.ظ)Pure Liveliness نوشته شده توسط: (27 آذر ۱۳۹۵ ۱۰:۳۴ ب.ظ)Marzie_1371 نوشته شده توسط: (26 آذر ۱۳۹۵ ۰۹:۱۶ ب.ظ)Pure Liveliness نوشته شده توسط: [tex]\sum^{\infty}_{k=1}\frac{1}{k}\: =\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...[/tex]
همیشه [tex]\frac{a_{k+1}}{a_k}=\frac{(\frac{1}{k+1})}{(\frac{1}{k})}=\frac{k}{k+1}\: <\: 1[/tex] برقرار هست اما باید یه r ای پیدا کنیم که به ازای هر دو جمله ی پشت هم رابطه ی رو به رو برقرا باشه: [tex]\frac{a_{n+1}}{a_n}[/tex]
در حالی که واسه چند تا جمله بررسی میکنیم این نسبت رو :
[tex]\frac{a_2}{a1}=\frac{1}{2}[/tex]
[tex]\frac{a_3}{a2}=\frac{2}{3}[/tex]
[tex]\frac{a_4}{a3}=\frac{3}{4}[/tex]
.
.
[tex]\frac{a100}{a99}=\frac{99}{100}[/tex]
.
همونطور که میبینیم این نسبت به یک همگرا هست. پس چه مقداری بین ۰ و یک واسه r پیدا کنیم که واسه تمام نسبت ها برقرار باشه؟ خب نمیشه هیچ r ای پیدا کرد. پس نمیتونیم از اون تکنیک استفاده کنیم.
اما وقتی میخوایم از اون تکنیک استفاده کنیم سیگما از صفر شروع میشه بعد حاصل اون عبارتی ک میگین همیشه برقراره یه چیز دیگه میشه
اگه به جای k صفر بذاریم که میشه ۱ به روی ۰ و نمیشه. کوچکترین عدد باید ۱ باشه.
از طرفی فرقی نداشت از کجا برای اون فرمول شروع کنیم. مهم اینه که هیچ r ای وجود نداره که اون رابطه درست باشه.
متاسفانه متوجه نشدم توضیحی که دادین رو
شما میگید چرا k رو از صفر نمیذاریم؟
خب چون سری تلسکوپی که تووش k توی مخرج هست کوچیکترین مقدار k واسه ش نمیتونه ۰ باشه. چون میره توی مخرج. حلی که خودتون فک میکنید درست هست رو بذارید.
مرسی الان فهمیدم چی شد من از زاویه درستی بهش نگاه نکرده بودم حل شما درست و کامله.. خیلی لطف کردی عزیزم
|