تالار گفتمان مانشت
سوال از مبحث رابطه ها - نسخه‌ی قابل چاپ

سوال از مبحث رابطه ها - azam84 - 05 مرداد ۱۳۹۰ ۱۲:۰۵ ق.ظ

اگر [tex]|A|=n\geq 1[/tex]، چند رابطه روی A نه بازتابی اند و نه نابازتابی
جواب:
[tex]2^n^2-2*2^\left( n^2-n \right )[/tex]
کسی میتونه جوابشو واسم توضیح بده
ممنون
نابازتابی:[tex]\forall a\in A\, (a,a)\notin R[/tex]

RE: سوال از مبحث رابطه ها - ف.ش - ۰۵ مرداد ۱۳۹۰ ۱۲:۳۷ ق.ظ

یک مثال برای رابطه روی A
[tex]A= {a,b}[/tex]
[tex]1( A*A={(a,b),(b,b),(a,a),(b,a)}[/tex]
[tex]R1={(b,a),(a,b),(b,b),(a,a)}[/tex]
[tex]R2={(a,b),(a,a)}[/tex]
...

یعنی [tex]n^{2}[/tex] تعداد اعضای ضرب دکارتی A ,A است زیر مجموعه های این مجموعه کل رابطه های روی A رو به ما میده که [tex]2^{n^{2}}[/tex] تا مجموعه است.

اونهایی که نابازتابی هستند یعنی از مجموعه اول( ضرب دکارتی) اون دودویی هایی (x,x) رو برداریم یعنی یک مجموعه با [tex]n^{2}-n[/tex] عضو که تعداد روابطش میشه [tex]2^{n^{2}-n}[/tex]

حالا باید تعداد روابط بازتابی رو هم ازش کم کنیم که تعدادشون با روابط نا بازتابی یکی هست!

اگر ماتریس روابط رو در نظر بگیرید در نابازتابی باید قطراصلی صفر باشه و بقیه درایه‌ها دو حالت دارند ۰ یا ۱ . در بازتابی قطر اصلی باید ۱ باشه و بقیه درایه‌ها دو حالت دارند. به خاطر همین هم تعدادشون یکی است.

برای اطلاعات بیشتر به این لینک مراجعه کنید:

مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.


با تشکر از این سوال جالب Smile

RE: سوال از مبحث رابطه ها - mfXpert - 05 مرداد ۱۳۹۰ ۱۲:۵۴ ق.ظ

تعداد کل رابطه هایی که میشه روی یک مجموعه n عنصری تعریف کرد برابر با [tex]2^{n^{2}}[/tex]
حالا باید تعداد رابطه هایی که یا بازتابی هستن‌، یا ضدبازتابی رو از تعداد کل رابطه‌ها کم کنیم.تعداد رابطه هایی که بازتابی هستن برابره با [tex]2^{n^{2}-n}[/tex] و تعداد رابطه های ضد بازتابی هم برابره با [tex]2^{n^{2}-n}[/tex].حالا باید مجموع این دو تا رو از تعداد کل رابطه‌ها یعنی [tex]2^{n^{2}}[/tex] کم کنیم تا تعداد رابطه هایی که نه بازتابی هستن و نه ضد بازتابی به دست بیان که میشه‌: [tex]2^{n^{2}}-(2^{n^{2}-n} 2^{n^{2}-n})=2^{n^{2}}-(2*2^{n^{2}-n})[/tex]

RE: سوال از مبحث رابطه ها - **sara** - 05 مرداد ۱۳۹۰ ۰۷:۳۴ ق.ظ

چه چیز باعث می شود که یک رابطه بازتابی نباشد؟
اینکه از بین n زوج (۱,۱),(۲,۲),…,(n,n) حداقل یکی از زوج‌ها در رابطه نباشد و بقیه دو حالت دارند یا می توانند انتخاب شوند یا خیر.

و برای اینکه یک رابطه ضد بازتابی نباشد:
از بین n زوج (۱,۱),(۲,۲),…,(n,n) حداقل یکی از زوج‌ها در رابطه باشد. یعنی از حالت تهی (حالتی که هیچکدام از این n زوج انتخاب نشوند) صرف نظر شود. پس تا اینجا تعداد روابط می شود:

[tex]2^{n}-2[/tex]

و برای سایر زوج‌ها هم که تعدادشان [tex]n^{2}-n[/tex] تا است. هر کدام ۲ انتخاب دارند:

[tex]2^{n^{2}-n}[/tex]

بنابراین تعداد روابطی که نه بازتابی و نه ضد بازتابی باشند برابر است با:

[tex](2^{n}-2)2^{n^{2}-n}=2^{n^{2}}-(2*2^{n^{2}-n})[/tex]