تالار گفتمان مانشت
مرتبه رابطه بازگشتی - نسخه‌ی قابل چاپ

مرتبه رابطه بازگشتی - m@hboobe - 07 شهریور ۱۳۹۲ ۱۱:۰۵ ب.ظ

کدام گزینه بهترین پاسخ برای رابطه زیر است؟

[tex]T(n)=T(n/4) T(3n/4) n^{2}[/tex]

در صورتی که [tex]T(1)=1[/tex]

الف) [tex]\theta (nlogn)[/tex]
ب) [tex]\theta (n^{2}logn)[/tex]
ج) [tex]\theta (n^{3})[/tex]
د) [tex]\theta (n^{2})[/tex]

RE: مرتبه رابطه بازگشتی - SnowBlind - 07 شهریور ۱۳۹۲ ۱۱:۵۳ ب.ظ

اگه شما درخت این رابطه رو بکشید یه درخت نا متوازن داره که به یکی با ارتفاع [tex]log_{4}(n)[/tex] و دیگری [tex]log_{\frac{4}{3}}(n)[/tex]

که اگه شما یه مجموع بزنی حد بالا و پایین بدست میاد و در نهایت میشه [tex]\Theta( n^{2})[/tex]

این یکی از سری ها میشه:

[tex]T(n) < n^{2}\sum _{i = 0}^{log_{\frac {4}{3}}n}(\frac{10}{16})^{i}< cn^{2} = O(n^{2})[/tex]
واسه حد پایین هم سری تا [tex]log_{4}n[/tex] بگیرید و در نهایت میشه
[tex]\Theta( n^{2})[/tex]

RE: مرتبه رابطه بازگشتی - Masoud05 - 10 شهریور ۱۳۹۲ ۱۲:۳۵ ب.ظ

یه روش سریع تر هم هست که در آن :
[tex]T(3n/4) T(n/4)= O(n)[/tex]

و طبق قضیه اصلی جواب گزینه ۴ میشه.

RE: مرتبه رابطه بازگشتی - SnowBlind - 11 شهریور ۱۳۹۲ ۰۱:۲۷ ق.ظ

(۱۰ شهریور ۱۳۹۲ ۱۲:۳۵ ب.ظ)Masoud05 نوشته شده توسط:  یه روش سریع تر هم هست که در آن :
[tex]T(3n/4) T(n/4)= O(n)[/tex]

و طبق قضیه اصلی جواب گزینه ۴ میشه.

قضیه اصلی مگه واسه رابطه های به فرم [tex]aT(n/b) f(n)[/tex] نیست

RE: مرتبه رابطه بازگشتی - Masoud05 - 11 شهریور ۱۳۹۲ ۱۱:۵۲ ق.ظ

(۱۱ شهریور ۱۳۹۲ ۰۱:۲۷ ق.ظ)SnowBlind نوشته شده توسط:  
(10 شهریور ۱۳۹۲ ۱۲:۳۵ ب.ظ)Masoud05 نوشته شده توسط:  یه روش سریع تر هم هست که در آن :
[tex]T(3n/4) T(n/4)= O(n)[/tex]

و طبق قضیه اصلی جواب گزینه ۴ میشه.

قضیه اصلی مگه واسه رابطه های به فرم [tex]aT(n/b) f(n)[/tex] نیست

ممنون از توجه تون . دقیقا به همین علت که گفتید ، من در ۲ مرحله جواب گرفتم . مرحله اولش از یه نکته تستی که در کتاب های کنکور اومده استفاده کردم ( که البته روش علمی نیست بنظرم اما برا تست جواب میده ) و مرحله دوم قضیه مستر زدم . این روشی که من گفتم یه خورده خیلی سریع هست و امکان اشتباه هم هست اگه باهاش کار نکرده باشید. بنظرم ساده ترین کار درخت کشیدن باشه .

RE: مرتبه رابطه بازگشتی - tabassomesayna - 25 مهر ۱۳۹۲ ۰۲:۲۵ ب.ظ

سلام
در کتاب ۶۰۰ مسئله ی دکتر قدسی دقیقا" مشابه همین سوال هستش که جواب داده شده :
[tex]n^{2}logn[/tex]
یعنی گزینه ۲ , ولی در پاسخنامه گزینه ۴ رو علامت زدنHuh
از روش تستی هم بخوایم بریم گزینه ۲ میشه
آخرش کدوم جوابه ؟؟

RE: مرتبه رابطه بازگشتی - tarane.68 - 29 آبان ۱۳۹۲ ۰۴:۴۹ ب.ظ

با سلام
جواب این رابطه بازگشتی [tex]n^{2}\log n[/tex] میشه
توی کتاب طراحی الگوریتم آقای مقسمی هم تفریبا چنین مثالی هست.

[attachment=13892]

طبق نکته کتاب آقای مقسمی :
[tex]\frac{3}{4} \frac{1}{4}=1 \Rightarrow n^{2}\log n[/tex]

RE: مرتبه رابطه بازگشتی - Mehrdad7soft - 29 آبان ۱۳۹۲ ۰۵:۵۶ ب.ظ

جواب این دوست عزیز که آخر جواب داده درست هستش

اگر مجموع برابر با ۱ بشه جواب می‌شه
log n * f
اینجا میشه n^{2}logn

RE: مرتبه رابطه بازگشتی - hoda ahmadi - 14 آذر ۱۳۹۲ ۰۱:۴۰ ب.ظ

سلام دوستان
به نظر من اگه طبق مستر بریم میشه گزینه ۴/
حالا کسی میدونه جواب درستش واقعا چیه؟؟؟

RE: مرتبه رابطه بازگشتی - tarane.68 - 14 آذر ۱۳۹۲ ۰۲:۱۲ ب.ظ

با سلام
در کتاب آقای قدسی عین این مسئله اومده. در گزینه ها جواب زده شده [tex]n^{2}[/tex] ولی در راه حل ها که مسئله حل شده در نهایت پاسخ درست [tex]n^{2}logn[/tex] اعلام شده .
جواب کتاب آقای قدسی :

[attachment=14094]

RE: مرتبه رابطه بازگشتی - ۲۰۱۳محمد - ۲۷ آذر ۱۳۹۲ ۰۱:۳۲ ب.ظ

دوستان عزیز طبق قرمول : در صورتی که در رابطه ( T(n) = T(a/b) + T(c/d) + F(n

a/b +c/d برابر با یک باشد جواب میشود ( O(log n ) * F(n
پس اینجا هم چون برابر یک میشه پس جواب میشه n^2 log n