تالار گفتمان مانشت
بهترین زمان بهینه برای مساله بزرگترین زیر دنباله صعودی(LIS) - نسخه‌ی قابل چاپ

بهترین زمان بهینه برای مساله بزرگترین زیر دنباله صعودی(LIS) - امیدوار - ۲۰ شهریور ۱۳۹۶ ۰۳:۵۲ ب.ظ

Heart با سلام و احترام
در چه زمانی، به صورت بهینه، می توان بزرگترین زیر دنباله صعودی در یک آرایه n تایی کدام هست؟

الف) [tex]\bigcirc(\lg n)[/tex] ب ) [tex]\bigcirc(n)[/tex] ج) [tex]\bigcirc(nlgn)[/tex] د) [tex]\bigcirc(n^2)[/tex]

RE: بهترین زمان بهینه برای مساله بزرگترین زیر دنباله صعودی(LIS) - امیدوار - ۲۰ شهریور ۱۳۹۶ ۰۹:۲۳ ب.ظ

(۲۰ شهریور ۱۳۹۶ ۰۳:۵۲ ب.ظ)امیدوار نوشته شده توسط:  Heart با سلام و احترام
در چه زمانی، به صورت بهینه، می توان بزرگترین زیر دنباله صعودی در یک آرایه n تایی کدام هست؟

الف) [tex]\bigcirc(\lg n)[/tex] ب ) [tex]\bigcirc(n)[/tex] ج) [tex]\bigcirc(nlgn)[/tex] د) [tex]\bigcirc(n^2)[/tex]

HeartHeart دوستان عزیز چند تا مقاله با عنوان و آدرس زیر پیدا کردم که میگه در [tex]\bigcirc(n)[/tex]HeartHeart میشه اینکار رو انجام داد
آدرس مقالات رو پیوست میکنم :

مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.


مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.


مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.


دوستان با توجه به مقالات بالا یعنی جواب، به صورت بهینه، [tex]\bigcirc(n)[/tex] میشه یا من دارم اشتباه میکنم

RE: بهترین زمان بهینه برای مساله بزرگترین زیر دنباله صعودی(LIS) - امیدوار - ۰۷ مهر ۱۳۹۶ ۰۴:۱۷ ب.ظ

دوستان خواهشا یکی جواب این سوال رو بده، آیا راه حل های موازی هم در O، تتا و امگا تاثیر داره یا نه باید فقط راه حل های سری مد نظر باشد

RE: بهترین زمان بهینه برای مساله بزرگترین زیر دنباله صعودی(LIS) - Mr.R3ZA - 12 خرداد ۱۳۹۷ ۰۵:۴۳ ق.ظ

(۲۰ شهریور ۱۳۹۶ ۰۹:۲۳ ب.ظ)امیدوار نوشته شده توسط:  
(20 شهریور ۱۳۹۶ ۰۳:۵۲ ب.ظ)امیدوار نوشته شده توسط:  Heart با سلام و احترام
در چه زمانی، به صورت بهینه، می توان بزرگترین زیر دنباله صعودی در یک آرایه n تایی کدام هست؟

الف) [tex]\bigcirc(\lg n)[/tex] ب ) [tex]\bigcirc(n)[/tex] ج) [tex]\bigcirc(nlgn)[/tex] د) [tex]\bigcirc(n^2)[/tex]

HeartHeart دوستان عزیز چند تا مقاله با عنوان و آدرس زیر پیدا کردم که میگه در [tex]\bigcirc(n)[/tex]HeartHeart میشه اینکار رو انجام داد
آدرس مقالات رو پیوست میکنم :

مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.


مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.


مهمان عزیز شما قادر به مشاهده پیوندهای انجمن مانشت نمی‌باشید. جهت مشاهده پیوندها ثبت نام کنید.


دوستان با توجه به مقالات بالا یعنی جواب، به صورت بهینه، [tex]\bigcirc(n)[/tex] میشه یا من دارم اشتباه میکنم

بعید بدونم از مرتبه n باشه. Rolleyes
بنظر من بهترین حالتش nlogn خواهد بود. (و بدترین حالت n^2)