سوال ۴۶ گسسته کنکور ارشد مهندسی کامپیوتر سال ۹۵ - نسخهی قابل چاپ |
سوال ۴۶ گسسته کنکور ارشد مهندسی کامپیوتر سال ۹۵ - mhasa - 30 بهمن ۱۳۹۵ ۰۹:۱۸ ب.ظ
سلام سوال ۴۶کنکور ارشد مهندسی کامپیوتر سال ۹۵ جواب گزینه چند میشه با توضیح |
RE: سوال گسسته - alireza01 - 01 اسفند ۱۳۹۵ ۱۲:۲۹ ق.ظ
سلام و وقت بخیر .... دو معادله را با هم جمع میکنیم . [tex]a_{n+1}+b_{n+1}=2a_n+2b_n=2(a_n+b_n)[/tex] [tex]a_0+b_0=1+0=1[/tex] حال داریم : [tex]\Longrightarrow\: a_n+b_n=2^n\: \: \longrightarrow\: a_{20}+b_{20}=2^{20}[/tex] با حذف [tex]b_n[/tex] از معادلات داده شده و حل رابطه داریم : [tex]a_n=(1-2n)(2^n)[/tex] پس [tex]a_{20}=(-39)2^{20}[/tex] در نهایت داریم : [tex]\frac{a_{20}}{a_{20}+b_{20}}=-39[/tex] |
RE: سوال ۴۶ گسسته کنکور ارشد مهندسی کامپیوتر سال ۹۵ - Jooybari - 01 اسفند ۱۳۹۵ ۱۲:۴۵ ق.ظ
سلام. وقت بخیر. بعنوان تکمیل پاسخ دوستمون alireza01: مقدار [tex]a_n+b_n[/tex] رو اول از جمع دو رابطه حساب میکنیم. جواب میشه: [tex]a_n+b_n=-2a_{n-1}-4b_{n-1}+4a_{n-1}+6b_{n-1}=2(a_{n-1}+b_{n-1})\Rightarrow a_n+b_n=2^n(a_0+b_0)=2^n[/tex] مقدار [tex]a_n[/tex] رو هم حساب میکنیم. برای این کار میشه جمله [tex]4b_{n-1}[/tex] رو بصورت [tex]4(4a_{n-2}+6b_{n-2})[/tex] بنویسیم. بعد با استفاده از رابطه [tex]6a_{n-1}=6(-2a_{n-2}-4b_{n-2})[/tex] عبارت [tex]b_n[/tex] رو از رابطه حذف کرد. به عبارت زیر میرسیم. [tex]a_n=4a_{n-1}-4a_{n-2}[/tex] این رابطه رو با استفاده از معادله مشخصه حل میکنیم. [tex]r^2-4r+4=0\Rightarrow r_1=r_2=2\Rightarrow a_n=2^n(c_1+c_2n)[/tex] با قرار دادن مقادیر جملات [tex]a_0[/tex] و [tex]a_1[/tex] مقادیر ثابت رابطه بالا رو حساب میکنیم. خواهیم داشت. [tex]a_n=2^n(1-2n)[/tex] [tex]\frac{a_{20}}{a_{20}+b_{20}}=\frac{2^{20}(1-2\times 20)}{2^{20}}=-39[/tex] |
RE: سوال ۴۶ گسسته کنکور ارشد مهندسی کامپیوتر سال ۹۵ - alireza01 - 01 اسفند ۱۳۹۵ ۰۱:۲۹ ق.ظ
(۰۱ اسفند ۱۳۹۵ ۱۲:۴۵ ق.ظ)Jooybari نوشته شده توسط: سلام. وقت بخیر.درود بر شما که با حوصله فراوان پاسخ میدید . |
RE: سوال ۴۶ گسسته کنکور ارشد مهندسی کامپیوتر سال ۹۵ - mhasa - 02 اسفند ۱۳۹۵ ۰۳:۰۸ ب.ظ
سلام تشکر فروان از همه |
RE: سوال ۴۶ گسسته کنکور ارشد مهندسی کامپیوتر سال ۹۵ - Alirezaj - 06 فروردین ۱۳۹۶ ۰۹:۴۹ ب.ظ
(۰۱ اسفند ۱۳۹۵ ۱۲:۴۵ ق.ظ)Jooybari نوشته شده توسط: سلام. وقت بخیر. سلام وقت بخیر . ببخشید این قسمتو ممکن توضیح بدین چطوری محاسبه شده .توی عبارت بالا ما اصلا [tex]6a_{n-1}=6(-2a_{n-2}-4b_{n-2})[/tex] نداریم ؟ و همچنین این قسمتو چطوری محاسبه کردین ؟[tex]2(a_{n-1}+b_{n-1})_{ }=a_n+b_n=2^n(a_{0\: }+b_0)[/tex] چطوری ۲ توان n گرفته ؟ |
RE: سوال ۴۶ گسسته کنکور ارشد مهندسی کامپیوتر سال ۹۵ - Alirezaj - 07 فروردین ۱۳۹۶ ۱۰:۲۲ ب.ظ
(۰۱ اسفند ۱۳۹۵ ۱۲:۴۵ ق.ظ)Jooybari نوشته شده توسط: سلام. وقت بخیر. |
RE: سوال ۴۶ گسسته کنکور ارشد مهندسی کامپیوتر سال ۹۵ - Jooybari - 08 فروردین ۱۳۹۶ ۰۲:۲۲ ق.ظ
(۰۶ فروردین ۱۳۹۶ ۰۹:۴۹ ب.ظ)Alirezaj نوشته شده توسط: سلام وقت بخیر . سلام. وقت بخیر. برای سوال اولتون: [tex]a_{n-1}=-2a_{n-2}-4b_{n-2}[/tex] این عبارت بالا رو داریم. کافیه اندیس بیشترین جمله رو برابر n-1 بگیرید. حالا دوطرف رو در ۶ ضرب کنید. برای سوال دومتون: با فرض [tex]C_n=a_n+b_n[/tex] وقتی داریم [tex]C_n=kC_{n-1}[/tex] میتونیم بنویسیم [tex]C_n=k^nC_0[/tex]. به بخش حل معادلات بازگشتی همگن درجه ۱ با ضرایب ثابت مراجعه کنید. |
RE: سوال ۴۶ گسسته کنکور ارشد مهندسی کامپیوتر سال ۹۵ - Alirezaj - 08 فروردین ۱۳۹۶ ۰۹:۲۵ ق.ظ
(۰۸ فروردین ۱۳۹۶ ۰۲:۲۲ ق.ظ)Jooybari نوشته شده توسط:(06 فروردین ۱۳۹۶ ۰۹:۴۹ ب.ظ)Alirezaj نوشته شده توسط: سلام وقت بخیر . ببخشید .یک سوال. اگه ممکنه میشه این جمله رو توضیح بدین که دقیقا منظورتون چی بوده ؟ "مقدار [tex]a_n[/tex] رو هم حساب میکنیم. برای این کار میشه جمله [tex]4b_{n-1}[/tex] رو بصورت [tex]4(4a_{n-2}+6b_{n-2})[/tex] بنویسیم. بعد با استفاده از رابطه [tex]6a_{n-1}=6(-2a_{n-2}-4b_{n-2})[/tex] عبارت [tex]b_n[/tex] رو از رابطه حذف کرد.". منظورم اینکه از کدوم رابطه مقدار [tex]a_n[/tex] رو محاسبه میکنیم ؟ و از کدوم رابطه مقدار [tex]b_n[/tex] رو حذف میکنیم ؟ اگه توضیح بدین ممنون میشم . |
RE: سوال ۴۶ گسسته کنکور ارشد مهندسی کامپیوتر سال ۹۵ - Jooybari - 09 فروردین ۱۳۹۶ ۰۱:۱۷ ق.ظ
(۰۸ فروردین ۱۳۹۶ ۰۹:۲۵ ق.ظ)Alirezaj نوشته شده توسط: ببخشید .یک سوال. منظور اینه که قصد داریم دنباله a رو مستقل از b حساب کنیم تا بشه فرم صریحش رو حساب کرد. |
RE: سوال ۴۶ گسسته کنکور ارشد مهندسی کامپیوتر سال ۹۵ - Alirezaj - 09 فروردین ۱۳۹۶ ۰۸:۲۷ ق.ظ
(۰۹ فروردین ۱۳۹۶ ۰۱:۱۷ ق.ظ)Jooybari نوشته شده توسط:(08 فروردین ۱۳۹۶ ۰۹:۲۵ ق.ظ)Alirezaj نوشته شده توسط: ببخشید .یک سوال. خیلی ممنون. |
RE: سوال ۴۶ گسسته کنکور ارشد مهندسی کامپیوتر سال ۹۵ - msour44 - 10 فروردین ۱۳۹۶ ۰۱:۵۴ ق.ظ
سلام فکر کردم شاید این روش حل هم به درد دوستان بخورد. نیازی به یافتن [tex]a_n[/tex] نداریم کافی است نسبت خواسته شده را بدست اوریم [tex]\frac{a_{n+1}}{a_{n+1}+b_{n+1}}=\frac{-2a_n-4b_n}{2a_n+2b_n}=-1\: -\frac{b_n}{a_n+b_n}[/tex] حال اگر اینبار نسبت [tex]b_{n+1}[/tex] را به مجموع بدست بیاوریم [tex]\frac{b_{n+1}}{a_{n+1}+b_{n+1}}=\frac{4a_n+6b_n}{2a_n+2b_n}=2+\frac{b_n}{a_n+b_n}\: \: \: \: \rightarrow\: \: \: \: \frac{b_n}{a_n+b_n}=2n\: [/tex] حال اگر ۲n را در رابطه بالا قرار دهیم داریم[tex]\frac{a_{n+1}}{a_{n+1}+b_{n+1}}=-1-2n[/tex] حال برای رسیدن به منظور مسئله کافی است n را ۱۹ در رابطه قرار دهیم تا مقدار[tex]-39[/tex] بدست اید. |
RE: سوال ۴۶ گسسته کنکور ارشد مهندسی کامپیوتر سال ۹۵ - Alirezaj - 12 فروردین ۱۳۹۶ ۱۰:۵۰ ق.ظ
(۱۰ فروردین ۱۳۹۶ ۰۱:۵۴ ق.ظ)msour44 نوشته شده توسط: سلام سلام.خیلی ممنون |
RE: سوال ۴۶ گسسته کنکور ارشد مهندسی کامپیوتر سال ۹۵ - ali.majed.ha - 12 فروردین ۱۳۹۶ ۰۱:۵۴ ب.ظ
از عزیزانی که وقت می ذارن و با حوصله و دقت سوال ها رو جواب می دن، نهایت تشکر رو دارم. موفق و پیروز باشید |